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RESUMO

TERRA, R.M. Aplicacdo de controle 6timo para a movimentacéo plana
de carga em pontes rolantes. 2014. 87p. Dissertacdo (Concluséo de curso). - Escola
Politécnica da Universidade de Sdo Paulo, Departamento de Engenharia Mecénica,
Séo Paulo, 2013.

O trabalho propde-se a estudar o problema de movimentacao plana de carga
em uma ponte rolante. No modelo fisico considera-se que a viga de sustentagdo é rigida
e gque o cabo de movimentacdo é flexivel. O projeto do controlador é desenvolvido,
com o objetivo de fazer o transporte em tempo minimo, com oscilacdo limitada e

aplicando-se 0 menor esforgo de controle durante o trajeto.



ABSTRACT

TERRA, R.M. Application of optimum control for plane drive on gantry
cranes. 2014. 87p. Dissertacdo (Conclusdo de curso). - Escola Politécnica da
Universidade de Séo Paulo, Departamento de Engenharia Mecénica, Sao Paulo,
2013.

This work proposes to study the plane drive on gantry cranes. The physical
model considers a rigid beam and a flexible cable as components of the crane. The
controller project development, with minimum-time, minimum-control energy and
limited oscillation.
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1. INTRODUCAO

1.1. Pontes Rolantes

A ponte rolante é um equipamento utilizado para a elevacdo e movimentacéao
de cargas e materiais pesados. Pode descarregar e carregar containers, além de
organizar materiais pesados em grandes depdsitos. Seu uso € comum nas industrias:

metal mecanica e de mineragdo, principalmente.

Na movimentacdo de carga por uma ponte rolante, trés movimentos s&o
possiveis: 0 movimento vertical de icamento e descida da carga, operado pela extensdo
ou recolhimento dos cabos, 0 movimento longitudinal ao longo do eixo da viga,
causado pela movimentacdo do carro, e 0 movimento transversal em relagdo ao eixo
da viga, que é feito sobre os trilhos de apoio da ponte rolante. Normalmente a
movimentacdo possui trés etapas: icamento da carga, movimentacdo até o ponto
desejado, dado por uma composicdo de movimentos transversais e longitudinais, e por

ultimo a descida da carga no ponto final.

Figura 1 — Ponte Rolante

Para que a movimentacdo seja eficiente, o processo deve ser rapido, para
proporcionar ganho de tempo, economia nos custos totais, produtividade e

competitividade. Além disso, deve-se garantir que as oscilagbes da carga serdo



minimas para manter a integridade da carga, componentes da ponte rolante,

operadores, etc.

Porém, quanto maior a aceleragcdo imposta ao carro, maior a oscilac¢do da carga,
de forma que os objetivos de reduzir o tempo de operacédo e a oscilagdo da carga se

tornam altamente conflitantes.
1.1.1. Componentes da ponte rolante
Todas as pontes rolantes possuem as mesmas pecas fundamentais:
¢ Viga de apoio, que fica apoiada sobre os trilhos, e que serve de apoio ao carro;

e Carro, que realiza a movimentacdo da carga na direcdo longitudinal ao longo

da viga;

e Talhaelétrica, que realiza 0 movimento vertical da carga, € composta de cabos

de aco e motor;
e Freios;

e Cabine de comando.

Figura 2 — Ponte Rolante realizando transporte



1.2. Referéncias e estudos
1.2.1. Zairulazha Bin Zainal, marcgo 2005

Em 2005 ZAIRULAZHA BIN ZAINAL realizou um estudo sobre a vibragédo
de pontes rolantes e como minimiza-las. O trabalho possui ideias que podem ser aqui
aproveitadas. Na abordagem de ZAIRULAZHA BIN ZAINAL, existe a limitacdo de
termos o comprimento | fixo, ou seja, o cabo é considerado rigido. Além disso,
movimentos de subida e descida da carga ndo foram testados neste caso. De qualquer
forma o controle do movimento plano da carga para a translacdo do carro ao longo da

lanca foi estudado.
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Figura 3 — Modelo de ponte rolante proposta por ZAIRULAZHA BIN ZAINAL

1.2.2. Edson José Cardoso de Souza, 2009

Em 2009, Edson José Cardoso de Souza apresentou em sua tese de mestrado
pela Escola Politécnica, um trabalho de titulo: “Controle anti-oscilatério de tempo
minimo para guindaste usando a programacao linear”, o qual, trata da vibracdo em
guindastes, e propde métodos para minimiza-la. Como a viga foi considerada rigida, a
modelagem pode ser aproveitada para uma ponte rolante, pois 0 modelo fisico pode

ser representado de forma idéntica.
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Figura 4 - Modelo de guindaste, proposto por Edson José Cardoso de Souza

1.2.3. Grupo de Mecanica Aplicada, UFRGS

Um grupo com diversos participantes, dentre eles professores e mestrandos da
UFRGS, realizaram um trabalho a respeito de guindastes, que levava em conta,
inclusive, a resposta do guindaste quando solicitado pelo vento. O trabalho possui

diversas informac6es Uteis no estudo a ser aqui realizado.
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Figura 5 - Esquema de guindaste, por grupo de mecéanica aplicada, ufrgs

1.2.4. Quanser 3DOF Crane

A empresa Quanser possui um guindaste de torre em escala reduzida, que

permite a realizacdo de testes fisicos, sem o risco e custos de um modelo em escala



real. Na ficha técnica do modelo, existem vérias informagdes dimensionais, que podem
ser usadas nas simulagdes numéricas, para garantir que os dados possuem

proporcionalidade e sdo aderentes aos de guindastes reais.

Figura 6 - Modelo de guindaste Quanser 3DOF Crane
1.2.5. Grupo de alunos da Escola Politécnica, 2010

Em 2010 um grupo formado por Bruno Medeiros Leite, José Moreira de Souza
Neto, Luciano de Almeida Nagata e Yuji Fugita Sasaki, realizou em seu trabalho da
disciplina de Modelagem de Sistemas Dinamicos (e posteriormente, em 2011, na

disciplina de controle) a modelagem e uma série de simula¢des para um guindaste do

&

tipo torre.

Figura 7 - Modelo de guindaste para movimento tridimensional



Neste trabalho, foi considerada a elasticidade do cabo, porém néo da estrutura,
0 que se adere a proposta de desenvolvimento deste, além de fornecer ricas
informacdes, € uma importante base comparativa de dados. A bibliografia utilizada

pelo grupo seré consultada ao longo do projeto.

Figura 8 - Modelo de cabo de agco com elasticidade

1.2.6. Luiz Vasco Puglia, 2011

Luiz Vasco Puglia, orientado por Fabrizio Leonardi, realizou um estudo no

gual modelou uma ponte rolante, considerando sua estrutura rigida.

O modelo é composto por um carro com rodas, que desliza sobre trilhos e
apresenta deslocamento apenas na dire¢cdo da viga. Preso ao carro existe um sistema
de icamento de carga, permitindo variar a distancia da massa ao carro. Desta forma, a
planta possui trés graus de liberdade, a posi¢do do carro, o angulo formado entre a

vertical e o cabo de suspenséo da massa e a distancia entre a massa e o carro.
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Figura 9 - Trajetoria da carga (Vasco,2011)

O objetivo do trabalho de Vasco foi determinar a trajetoria 6tima a ser realizada
pela carga, de forma que o seu deslocamento fosse feito em tempo minimo e com a

menor oscilagdo possivel.
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Figura 10 — Modelo fisico proposto por Vasco



1.3. Motivagao

Muitos esforcos foram feitos no desenvolvimento de controladores para a
operacéo de pontes rolantes, guindastes e transportadores de carga no geral. Dentre 0s
principais objetivos dos controladores, destaca-se a tentativa de reduzir as vibragoes

tanto da estrutura, quanto as oscilacdes realizadas pela carga na sua movimentacao.

Apesar dos avangos conquistados, os controladores desenvolvidos até entdo
ndo garantem que tal objetivo seja atingido de forma satisfatdria, ou que a operagéo
seja fisicamente realizavel. Assim, considera-se o trabalho de desenvolvimento de

controladores para movimentacao de carga, necessario e sem solucao bem definida.
Fatos motivacionais para o desenvolvimento do presente trabalho séo:

e As vibracdes da estrutura fazem com gue o posicionamento da carga seja
dificultado e as tarefas de movimentacdo se tornem mais lentas, o que

implica diretamente no custo de execucdo das obras ou outras aplicacoes;

e A movimentagdo de grandes cargas em pontes rolantes coloca em risco 0s
operadores e as pessoas que frequentam ambientes nos quais as operagdes

sdo feitas.

1.4. Objetivos

O objetivo do trabalho é modelar e realizar o controle de uma ponte rolante
considerando a elasticidade do cabo, minimizando o esforco de controle, assim como
0 tempo de execucdo da movimentacdo, e limitando a oscilacdo da carga. A proposta
é desenvolver um controlador que seja capaz de movimentar a carga de forma que essa
chegue na posicdo final com o cabo de sustentacdo na vertical no minimo tempo

possivel e com o menor esforco de controle.



2. FUNDAMENTOS TEORICOS

2.1. Mecanica de corpo rigido
2.1.1. Fundamentos da cinemética

Ao analisar 0 movimento de um corpo rigido, observa-se que através do
vinculo cinematico existente entre os pontos deste, basta o conhecimento da
velocidade de um ponto arbitrario pertencente ao corpo e do vetor de rotacdo deste
corpo, para que todo o campo de velocidade seja univocamente determinado.

Sendo (P; — P;) o vetor de posicdo relativa entre dois pontos de um mesmo

corpo rigido, é possivel provar que a velocidade relativa entre os pontos €
perpendicular a reta que os une, ou seja, ao vetor (P; — P;). E possivel demonstrar

também que existe uma relacdo univoca entre os vetores velocidade de dois pontos do

corpo rigido:
v; = Uj + .QA(Pi - P]) (21)

Sendo que Q é o vetor de rotacdo do corpo. Derivando a equacao anterior em

relacdo ao tempo tem-se o0 campo de aceleragdes:
a; = aj + QNP — P) + Q QN(P; — P))] (2.2)
2.1.2. Teorema do movimento do baricentro

Aplicando a segunda lei de Newton a um elemento infinitesimal de massa dm,

supondo a massa do corpo invariante no tempo, tem-se:
df =a-dm (2.3)
E integrando a equacgdo acima em todo o dominio do corpo obtém-se:

R = fwrpoa -dm  (2.4)

Sendo R a resultante das forcas atuando sobre o corpo. A expressdo acima pode

facilmente ser levada a:
R=m-a; (25)

Com a, sendo a aceleracao do baricentro do corpo.



2.1.3. Energia cinética de um corpo rigido

Partindo de um corpo rigido e dois sistemas de coordenadas, sendo um deles
solidario ao corpo, e o0 outro do qual é medido o movimento do corpo, tem-se que a

energia cinética de um elemento diferencial de massa € por definicéo:
dT =~ -vidm (2.6)

Integrando em todo o dominio do corpo, obtém-se a energia cinética total para

0 corpo.
-1 2.
T = warpov dm (2.7)

Sendo: r' = (P — 0") o vetor de posicédo relativa entre o elemento de massa

dm e o ponto O’, pertencente ao corpo, fica que:
v=vy + Q' (2.8)
O que levado a expressdo da energia cinética fornece:
T=_-m-vy+mvg-QNG—0) + 5 (el (29
Se for escolhido 0’ de forma que O’ = G entdo pode-se simplificar para:
T =g mevd+ 3 (U} (210
Sendo J; a matriz de inércia do corpo em relacéo ao seu baricentro.

2.2. Mecanica analitica

A abordagem da mecéanica analitica considera o sistema mecanico como um
todo, formulando o problema a partir de duas grandezas escalares: a energia cinética e
a energia potencial. As restri¢cdes cinematicas do movimento sdo contempladas sem a
necessidade do célculo das forgas existentes no sistema. Além disso, a introducédo de

coordenadas generalizadas torna o problema extremamente versatil.
2.2.1. Coordenadas generalizadas

Existe um namero infinito de conjuntos de coordenadas que podem ser

utilizadas para representar a configuracdo de um sistema. Alguns conjuntos podem até



mesmo nao ter um significado geométrico aparente, mas representam a posic¢ao do
sistema em determinado instante e podem, portanto, ser consideradas como
coordenadas num sentido mais amplo. Desta forma, podemos chamar qualquer

conjunto com essas propriedades de coordenadas generalizadas de um sistema.

Associado a cada conjunto de coordenadas generalizadas, pode existir um
conjunto de equacgdes de vinculo cinematico. Porém, se as coordenadas forem
independentes, entdo o numero de equagbes que descrevem o sistema € igual ao

namero de graus de liberdade, e neste caso nao ha equagdes de vinculo.
2.2.2. Equacdes de Lagrange

As equacbes de Lagrange podem ser obtidas a partir das Leis de Newton,
usando o conceito de trabalho virtual e expressando os resultados por meio de
coordenadas generalizadas e forcas generalizadas. Na descricdo de um sistema com n
graus de liberdade resultam n equacdes diferenciais de segunda ordem. Apenas
velocidades e deslocamentos aparecem na funcdo Lagrangeana (ou seja, funcbes das
coordenadas generalizadas e suas primeiras derivadas). Nenhuma aceleracdo é
necessaria e, portanto, a necessidade de calculos cinematicos complexos ¢é
frequentemente evitada. Uma vez que a funcdo Lagrangeana é determinada, o
procedimento para obter as equagfes do movimento é muito direto. E um fato a ser
lembrado, que o enfoque Lagrangeano permite que se obtenham as equacGes do
movimento para uma larga classe de problemas, a partir de uma Unica funcgéo escalar.
A abordagem por energias em lugar de forcas e aceleracdes permite que se lide com
grandezas escalares.

De acordo com Lagrange, sendo T a energia cinética total do sistema e V a

energia potencial total, entdo a Lagrangeana pode ser obtida de:
L=T-V (211)

A partir dai as equagdes diferenciais do sistema sdo obtidas da expressdo a

sequir:

d (oL JaL .
E(a_xl)_ = Qi (=123.m) (212



Sendo x; as coordenadas generalizadas e Q; as for¢as generalizadas presentes

para cada coordenada generalizada.
2.2.3. Funcéo de dissipacdo de Rayleigh

As forcas generalizadas que aparecem na equacao anterior incluem as forcas
ndo conservativas, que ndo podem ser derivadas a partir de um potencial. Dentre essas
forcas existe uma classe que deve receber uma atencéo especial que engloba as forcas
que sdo proporcionais a velocidade da particula e resistem ao movimento, isto é, agem

na mesma direcdo da velocidade, mas em sentido oposto, e ttm a forma:
Fi = —C;- J.Ci (213)
Funcdes deste tipo sdo dissipativas, pois sua poténcia é negativa e, energia é
retirada do sistema. Definindo a fungéo de dissipagéo de Rayleigh como:

R= YL,z ¢ % (214)

A forca generalizada associada a R pode ser expressa por:

OR
0= -5 (215

Introduzindo a funcdo de dissipacdo na expressdo de Lagrange para a

determinacéo das equacdes diferenciais do sistema fica:

d (0L daL OR .
E(E) — ot o= Qs ((=123.m)  (216)

2.3. Controle 6timo

A metodologia do controle 6timo é utilizada para se minimizar ou maximizar
uma funcdo objetivo de um sistema ou processo, respeitando uma série de restricdes.

Como resultado sera obtida uma lei de controle que atenda aos objetivos.

A formulacdo de um problema de controle 6timo exige: a descricdo matematica
do modelo ou processo, determinagdo das restrigdes fisicas ou de recursos do sistema

ou processo e especificacdo do critério de desempenho.

2.3.1. Descri¢do matematica



A descricdo matematica pode ocorrer de duas formas: no dominio das
frequéncias, na forma de funcgdes de transferéncia; no dominio do tempo, na forma de

variaveis de estado. No caso sera aprofundada a representacdo no dominio do tempo.

Como dito em [14], o estado de um sistema dindmico € um conjunto de valores
fisicos (posicdo, velocidade, aceleracdo, temperatura, etc.), normalmente
representados de forma vetorial, que determinam completamente a evolucdo do

sistema ao longo do tempo na auséncia de excitagdo externa.

Dado que o comportamento de um sistema dindmico € descrito por um
conjunto de equac0es diferenciais, 0 modelo matematico do sistema é constituido por

esse conjunto de equacgdes, além de um conjunto de condi¢es iniciais e de contorno.

Na abordagem por espaco de estados, todas as equacdes sdo reduzidas a forma
de equacdes diferenciais de primeira ordem. As varidveis dinamicas que aparecem
nessas equacdes sdo chamadas de variaveis de estado. Cada variavel de estado deve

ter sua condicao inicial determinada.

Como exemplo, a descri¢cdo em espaco de estados para o sistema abaixo sera

determinada.

K
f(t)
. M | —
I
?I y(t)

Figura 11 — Sistema massa-mola-amortecedor

Aplicando os métodos descritos nas se¢des anteriores, € possivel deduzir que a

equacdo diferencial que representa o sistema fisico é:

M-#+B-%+K-x=f(t) (2.17)



Define-se:
X = q (2.18)
X = q (2.19)
De forma que: 4, = q,
O sistema fica:
41 = q (2.20)
42=_%'QZ_§'Q1+% (2.21)
Que descrito na forma matricial:
A= o] 1

Se a forga f(t) for entendida como uma entrada de controle que serve para

0
@] (2.22)
M

posicionar a massa do sistema, representada por u(t):

[gﬂ - [—0% —1%] ' [Z;] + [1/0M] U (2.23)

Na forma geral de uma representacdo em espaco de estados:
x(t) =A-x(t) +B-u(t) (2.24)
Sendo que:
x(t) = Vetor das derivadas primeiras dos estados
A = Matriz dindamica do sistema
x(t) = Vetor de estados
B = Matriz de controle
u(t) = Vetor de controle

As matrizes A e B sdo matrizes de constantes, neste caso os sistemas sao ditos
invariantes no tempo. Além disso é necessario definir condi¢es iniciais de g e g2 para

que a dindmica do sistema esteja completamente descrita.



Falta ainda uma descri¢do para a informacéo sobre os estados do sistema ao
longo do tempo. As medidas sdo agrupadas em um vetor de saida y(t) que contém todas
as observacdes realizadas em fungdo do tempo t. Deve-se construir um modelo de

observacdes relacionando saidas e variaveis de estado. No caso linear fica:
y()=C-x(t)+D-u(t) (2.25)
Sendo que:
y(t) = Vetor das saidas
C = Matriz de observagao de estados
x(t) = Vetor de estados
D = Matriz de entradas diretas
u(t) = Vetor de controle
Com isso a representacdo completa no espaco de estados:
x(t) =A-x(t)+B-u(t) (2.26)
yt)=C-x(t)+D-u(t) (2.27)
Que para o sistema massa-mola-amortecedor fica:

[gﬂ - [—0% _1%] : [Z;] + [1/0M] ‘u (2.28)

y=11 0[2]+l0 0 ol (229)

Além das condigdes iniciais.

Deve-se ainda considerar duas defini¢des. Para o sistema descrito pela equacao

X)) =A-x(t)+B-u(t) comty < t < tr =t € [ty tf]

a) O historico dos valores de entrada (u) durante o intervalo [¢,, tf] recebe o

nome de historia de controle, ou simplesmente controle;

b) O historico dos valores de estado (x) durante o intervalo [¢,,t;] recebe o

nome de trajetoria de estado. Vale ressaltar que a trajetéria de controle deve ser

admissivel, ou seja, deve respeitar as restri¢des fisicas descritas no proximo topico.



2.3.2. Restricdes fisicas

Como restrigdes fisicas pode-se entender limita¢6es do sistema ou do processo,
por exemplo: méxima aceleracdo, méxima velocidade, mé&xima poténcia do motor,
comprimento méaximo ou minimo, maximo orcamento, maximo ou minimo numero de
maquinas ou trabalhador, etc. No exemplo do sistema massa-mola-amortecedor, pode-

se impor como restricao fisica a maxima forga aplicada a massa como sendo de 20N:
u(t) <20 (2.30)
2.3.3. Critérios de desempenho

Controle 6timo é aquele no qual se minimiza (ou maximiza) uma medida de
desempenho. A formulacdo do problema pode indicar diretamente a escolha de uma
medida de desempenho, porém em outros problemas a escolha é uma questdo
subjetiva. Por exemplo, para um problema no qual deseja-se mover uma carga entre
dois pontos, no minimo tempo possivel, a medida de desempenho aparece
naturalmente. Por outro lado, se a condi¢cdo imposta for posicdo e velocidade do
sistema préximos a zero, com 0 menor esforco de controle, a medida de desempenho

ndo e imediata.
2.3.4. O problema de controle 6timo

O problema de controle étimo consiste em determinar uma lei de controle u*
admissivel que faga com que o sistema x(t) = A - x(t) + B - u(t) acompanhe uma
trajetoria admissivel x* e que minimize ou maximize o indice de desempenho J

determinado:
J = h(x(t), tf) + ffof g(x(0),ut), )dt (2.31)

Sendo que u* é chamado de controle 6timo e x* € a trajetoria 6tima. Conforme
serd visto a frente, nem sempre o controle 6timo existe. Pode ser impossivel encontrar
um controle 6timo admissivel que garanta uma trajetoria admissivel. Em outros casos
ainda, o controle étimo pode néo ser Unico, de forma que ha mais de uma lei de controle
que resolve o problema de forma étima. Quando pode-se afirmar que u* faz com que

a medida de desempenho seja minimizada, diz-se que:



J* 2 h(xx(t), tr) + f:ofg(x « (O, ux(t),0)dt < h(x(t), tr) + fttofg(x(t),u(t), t)dt
(2.32)

ParaVu € U; V x € X. A desigualdade indica que este é o menor valor para

o indicador de desempenho dentro da regido admissivel.

Se 0 objetivo for a maximizagéo de alguma medida de desempenho do sistema,
estas mesmas teorias se aplicam, minimizando os negativos desta medida. Nas se¢des

seguintes serdo vistos métodos para a resolucéo do problema de controle 6timo.
2.4. Programagcéo linear

A programacdo linear (PL) é uma ferramenta para resolver problemas de
otimizacdo. Em 1947 George Dantzig desenvolveu um método eficiente para resolver
problemas formulados em programacéo linear, o chamado algoritmo simplex. Desde
entdo problemas de diversas areas como bancos, educacéo, petroleo, entre outros, vem

sendo desenvolvidos e resolvidos na forma de PL.
2.4.1. O problemade PL

Para ilustrar um problema de PL e ao mesmo tempo defini-lo, usar-se-a4 o

exemplo demonstrado em [10].

A empresa Giapetto’s Woodcarving, Inc. fabrica dois tipos de brinquedos de
madeira: soldados e trens. Sendo que tem-se o0s seguintes dados a respeito de seu preco

de venda e custos relacionados a fabricacéo:

Soldados Trens

Preco de Venda (RS) 27 21
Custo de materiais (RS) 10 9
Custo de m3o de obra (RS) 14 10
Carpintaria (Horas) 1 1

Acabamento (Horas)

Tabela 1 — Variaveis do problema de Giapetto

Além disso, Giapetto consegue comprar toda a matéria prima, mas tem apenas
100 horas para empregar em acabamentos, e 80 horas para carpintaria. A demanda por

trens é ilimitada, mas ele consegue vender no maximo 40 soldados por semana. O



Giapetto quer maximizar seu lucro semanal, e para isso precisa decidir quantos

soldados e quantos trens fabricar por semana.

Para formular este problema de PL, definem-se alguns conceitos:

Variaveis de decisdo: As varidveis de decisdo devem descrever
completamente as decisdes a serem tomadas, no caso do Giapetto, ele
precisa definir o nimero de soldados e 0 niUmero de trens, e assim suas

variaveis de decisdo séo:
X1 = Numero de soldados a produzir por semana
X2 = NUmero de trens a produzir por semana

Funcéo objetivo: Sempre, num problema de PL, deseja-se maximizar
ou minimizar algo. Este algo deve ser funcdo linear das variaveis de
decisdo. Esta funcdo linear, a ser maximizada ou minimizada, é

chamada de funcdo objetivo. No caso de Giapetto:
Lucro semanal = Receita semanal — Custo semanal (2.33)
Com as receitas sendo:
Receita semanal = 27 - x; + 27 - x, (2.34)
E os custos:
Custo semanal = (10 + 14) - x; + (9 + 10) - x, (2.35)

De forma que o lucro semanal, que é a funcdo objetivo a ser

maximizada é a seguinte:
Lucro semanal =3-x; + 2-x, (2.36)
Chamando a funcdo objetivo de z tem-se que:
max(z) =3-x;+ 2-x, (2.37)

Restrigdes: Conforme Giapetto aumenta sua producéo, as variaveis de
decisdo aumentam e portanto o lucro aumenta. Porém, Giapetto tem

algumas restri¢des, por exemplo: a cada semana ele tem 100 horas para



fazer acabamentos; a cada semana ele tem 80 horas para fazer
carpintaria; a cada semana ele vende no maximo 40 soldados. Todas

essas variaveis devem ser mostradas matematicamente na PL, como

segue:

Horas de acabamento: 2-x;+ 1-x, <100 (2.38)
Horas de carpintaria: 1-x; + 1-x, < 80 (2.39)
Numero de soldados: x; < 40 (2.40)

Os coeficientes para as variaveis de decisdo nas restricdes sdo
chamados também de coeficientes tecnoldgicos, isso porque em muitos
casos estdo relacionados a tecnologia utilizada no processo. O valor
encontrado ao lado direito da sentenca € chamado de right-hand side

(ou rhs) e comumente esta relacionado com disponibilidade de recursos.

e Restricdes de sinais: Para completar a formulacdo do problema de
programacao linear, deve-se especificar se ha restri¢oes de sinal, e neste
caso pode-se determinar que as variaveis de decisdo devem ser ndo
negativas, ou se sdo irrestritas (podem ser positivas, nulas ou

negativas). No caso de Giapetto:
X1,%, =20 (2.41)
2.4.2. Representacéo do problema de PL

Combinando todos os resultados obtidos até entdo, encontra-se a formulacgéo

completa do problema de PL:

max(z) =3-x; + 2-x, (Funcdo objetivo)  (2.42)

Sujeito a:
2-x;+ 1-x, <100 (Restricdo de acabamento)  (2.43)
1-x;+ 1-x, <80 (Restrigéo de carpintaria) (2.44)
x; <40 (Restricdo de demanda por soldados) (2.45)

Xq,Xy =0 (Restrigdes de sinal) (2.46)



Diz-se sujeito a, pois os valores das varidveis de decisdo devem respeitar todas

as restricoes.
2.4.3. Solucdo do problema de PL
2.4.3.1. Regido viavel

Um dos conceitos basicos associados a programacao linear é o de regido viavel.
Para a definicdo desse conceito, o termo “ponto” sera usado com o significado de
conjunto formado pelos valores de cada variavel de decisdo. Portanto, a regiao viavel
€ 0 conjunto de todos os pontos que satisfazem todas as restri¢fes da PL, incluindo as
restricdes de sinais. Em outras palavras, sdo todas as combinacOes de valores para as
variaveis de decisdo que respeitam as condi¢Ges impostas pelas equacdes que definem

o0 problema de PL.

Para um problema de duas varidveis, considerando a restricdo de sinal para

ambas as variaveis, fica, por exemplo:
X2

Regifo vidwel considerando
as restrigdo de ndo negatividade

—— x2 20

x20

X

Figura 12 — Regido viavel com restri¢cdes de ndo negatividade

Colocando-se uma condic¢do de que a variavel x; deve ser menor ou igual a A:

X2

Regido vidwel considerando
as restricio de:

- ndo negatividade

- restrigdo de xi

x{= A —

X

Figura 13 — Regido viavel com restricdo para X1



Aplicando uma restri¢do para a variavel xo em relagéo a xu:

Xz Regifo viavel considerando
as restigio de:
- ndo negatividade
- restrico de X
- restricio de x

1

Figura 14 — Regido vidvel com restricdo para X2 em relagdo a x1

Colocando outra restricdo para x2 em relagéo a xi:

X Regido viavel considerando

as mestrigéo de:

- néo negatividade

- restrigio de x1

- restrigio de x2

- restricio de interagio entre x: e x

/X1=,.¢|

¥ = B-kiA

x3=C- xq

# Xq

Figura 15 — Regido viavel com restricdo para x2 em relagdo a x1

Portanto, a solugdo Otima, deve ser encontrada no interior da regido viavel
(destacada em cinza na figura acima). Qualquer solucdo encontrada fora desta regido

desrespeitard uma ou mais das restri¢cGes do problema.
2.4.3.2. Solucdo grafica para duas variaveis

Qualquer problema de PL com duas varidveis pode ser resolvido de forma
gréfica. Nestes casos nomeia-se o eixo horizontal de x; e 0 eixo vertical de X2, que séo
as variaveis de decisdo. Encontra-se na sequéncia a regido viavel, dadas as restri¢oes
impostas a PL. No problema de Giapetto por exemplo, a regido viavel, mostrada na

forma gréfica fica:



100

Feasible region

80

60

40

wf

H

Figura 16 — Regido vidvel para o problema do Giapetto

Apbs identificada a regido viavel, parte-se para a determinacao do ponto 6timo,
que representa a solucao 6tima do problema. No caso, como deve-se maximizar o valor
do lucro semanal, representado pela funcéo z, deve-se encontrar o ponto na regido

viavel para a qual a fungdo z = 3+ x; + 2 - x, tenha seu valor méximo.

Para tal, deve-se representar as retas para as quais a funcéo z possua 0 mesmo
valor. Por exemplo, escolhendo o ponto (20,0), para o qual z = 60 achamos a reta

representada por:
X, =30-2x;,  (247)

E sabe-se que todos 0s pontos que pertencem a essa reta possuem o valor da
funcdo objetivo igual a 60. Ou seja, para qualquer combinacdo das variaveis X1 e Xo,
que estejam sobre a reta mencionada, o lucro semanal sera de R$60,00. Como todas as

retas que representam as solugdes para o problema séo do formato:
3:x,+ 2-x, = Constante (2.48)

Fica claro que todas possuem a mesma inclinagédo, bastando portanto deslocar-
se perpendicularmente na direcdo que aumenta o valor da funcéo objetivo (construindo
retas paralelas a primeira), até que se tangencie a regido viavel. O ponto de tangéncia

entre a reta e a regido viavel sera o ponto da solucdo 6tima.

No caso de Giapetto, 0 ponto 6timo € o ponto representado por G, onde:



x; =20; x, =60; z=R$180,00 (2.49)
2.4.3.3. Solucéo 6tima

Um problema de PL pode ter apenas uma solu¢do 6tima, como mostrado
anteriormente, pode ter multiplas solugdes 6timas, ou até mesmo ser insollvel, caso
no qual ndo ha solucdo para as restricGes impostas. Graficamente, fica simples de

entender, como na solucéo para a seguinte formulacéo:

max(z) =3-x;, + 2-x, (2.50)

Sujeito a:
1 1
o at srxsl (2.51)
1 1
St sl (2.52)
X1,%3 =0 (2.53)

A regido viavel fica determinada por:

Figura 17 — Regido viavel com maltiplas solucdes

Nota-se que neste caso, a reta que tangencia a regido viavel é coincidente com
0 segmento AE, de forma que qualquer combinacao entre as variaveis de deciséo, que

estejam sobre essa reta serdo solugdes otimas.

No caso do problema formulado por:



max(z) =3-x;, + 2-x, (2.54)

Sujeito a:
1 1
ot sl (2.55)
1 1
St sl (2.56)
x1 = 30 (2.57)
X, = 20 (2.58)
X1,%3 =0 (2.59)

A regido viavel, que respeite todas as restrigcdes € inexistente, de forma que nao

ha solucdo 6tima e o problema é insoluvel:

x)

Figura 18 — Regido viavel inexistente (Problema insoltvel)

2.4.3.4. Minimizando a soma do mddulo na funcao objetivo

Em alguns casos é necessario minimizar a soma de valores absolutos de
determinadas variaveis na funcdo objetivo, neste caso, a metodologia a seguir,

encontrada em [13] e também utilizada por [5], pode ser utilizada:

Encontrar y; com i = 1, ...m que minimize:

7=1|2ﬁ13’i bij — by (2.60)



Sujeito a:
Yitiyiaij= ¢ paraj=1,..,1 (2.61)
Yroyvia;= ¢ paraj=1+1,..,n (2.62)
yi= 0 parai=1, ..,k (2.63)
y; irrestrito parai=1, ..,k (2.64)

Para que o problema fique no formato de uma PL, deve-se adicionar mais p

variaveis ficticias y,,11, ..., ¥m+p € deve-se trocar a fungéo objetivo para:
min(z) = X0_; Ym; (2.65)
Sujeito as restri¢oes:
iYibij— by < ymyj paraj=1,..,p (2.66)
=X Yibij— by < Yy paraj=1,..,p (2.67)

Neste caso, as variaveis ficticias yp, 41, ..., Ym+p SErdo sempre ndo negativas,

mesmo que isto ndo esteja explicito nas restricoes.
2.5. Programacao linear aplicada a controle 6timo

Como em [5], serd mostrado como um problema de controle 6timo, para um
sistema dinamico linear e de tempo discreto pode ser colocado na forma padrdo de um

problema de programacdo linear, partindo-se da representacdo em espaco de estados.

Considerando um sistema dinamico de tempo discreto, representado em espaco

de estados, tem-se que:
Xes1) = A Xy + B ugy (2.68)
Sendo que:
Xk+1) = Valor do vetor de estados no proximo instante KT
X(ky = Valor do vetor de estados no instante kT

w (k) = Valor do vetor de controle no instante kKT



A = Matriz do sistema
B = Matriz de entradas
Para cada instante kT, sendo k =0, 1, 2, 3... Tem-se portanto:
Xy = Ax ) + By
X@2) = Axqy + Buy = A(Axq) + Buy) + Bug
= A%x( + A'Bugy + A°Bugy

X(3) = AX(Z) + BU(Z) = -

De forma que para um instante nT qualquer, pode-se escrever:
X(n) = An.X'(O) + A("'l)Bu(o) + A("'Z)Bu(l) + A(n_3)BLL(2) + -+ AlBU(n_z) + AOBU(n_l) (2.69)

Que pode ser escrito como:

o)

o |
Xy = A"x(g) + [ATVB Am2Dp A0=3p ... A1 A°B]| i | (2.70)
|u(n—2)
lu(n—l)

Ou entdo:
Xny = Fxey+GU (2.71)
Sendo que neste caso:
F=A" (2.72)
G = [Am"VB An-Dp A=3p ... A1B A°B] (2.73)
U

[u(n—Z)
Umn-1)

U= (2.74)



E interessante notar, que a partir dessa ultima relacdo torna-se possivel
representar o modelo dinamico na forma de um problema de programacao linear, que

inclui as condig@es iniciais xqy € x(). O problema fica descrito por:
GU = X(n) - FX(O) (275)
E fazendo com que:

A

G (2.76)
X=U (2.77)
B = Xy — Fxpy (2.78)
Fica que:
AX =B (2.79)

E assim voltamos ao formato padréo para a PL, sendo que agora temos o vetor
de controle no lugar das variaveis de decisdo. Se houver restri¢des para o historico de
controle, que possam ser representadas por desigualdades elas podem ser também

descritas por:
A;X; =By (2.80)

Desta forma, a dinamica do sistema foi descrita por restricdes lineares entre 0s
estados e 0 vetor de controle. Falta ainda, definir qual a funcéo objetivo a ser resolvida
na PL. Esta funcdo objetivo dependera do problema de otimizacdo que se pretende
resolver.



3. METODOLOGIA

A metodologia segue as etapas ordenadas a seguir:

e Determinacdo de um modelo fisico que seja representativo do
problema, mas ao mesmo tempo simples o suficiente para que possa ser
equacionado e resolvido;

e Obtencdo de um modelo matematico que descreva o comportamento do
modelo fisico. Nesta etapa, espera-se obter um conjunto de equacdes
diferenciais, caso seja necessario essas devem ser linearizadas para
permitir a posterior resolucéo;

e Colocacao do modelo matemaético no formato de espaco de estados para
a simulacdo do comportamento do sistema e posterior aplicacdo das
técnicas de controle 6timo;

e Obtencdo das leis de controle e anélise dos resultados;

e Comparacdo de resultados com os de um modelo matematico mais

simples para 0 mesmo modelo fisico.

Deve-se concluir, ao final, se 0 modelo mais complexo traz vantagens em
relacdo ao modelo mais simples, ou se as simplificacdes pouco alteram os resultados

finais.



4. ESTUDO DE CASO

4.1. Modelo fisico

Para o estudo da aplicagdo de controle 6timo na determinagdo da trajetoria
Imposta a uma carga movimentada por uma ponte rolante, considerando a flexibilidade
do cabo de movimentacéo e de forma a minimizar as vibragdes da carga, € necessario

determinar um modelo fisico que seja representativo do modelo real.

O modelo fisico adotado neste trabalho pode ser visto na figura a seguir:

Figura 19 - Modelo fisico para o estudo de caso [5]

O modelo é composto de uma viga engastada em suas extremidades,
representando o corpo da ponte rolante, considerada rigida. Preso a viga e apoiado
sobre rodas, estd o carro de movimentacdo, e suportado por ele a carga em balanco. O
carro sera representado por um bloco de massa concentrada. Além disto, sera utilizado

um modelo de cabo como o apresentado na fig. 19:



Figura 20 - Modelo fisico de cabo com elasticidade para o estudo de caso
4.2. Modelo matematico
4.2.1. Hipoteses do modelo

Ao definir o modelo fisico, algumas hipdteses serdo assumidas para simplificar

0 problema, quais sao:

e O cabo de sustentagdo é de massa desprezivel,

e O movimento é inteiramente plano;

e Nd&o ha forcas de atrito, exceto na juncdo entre o cabo e o carro;
e A viga é considerada rigida;

e O amortecimento do cabo devido a distensao é considerado viscoso.
4.2.2. Lagrangeana do sistema

Para encontrar a Lagrangeana do sistema, € preciso primeiro determinar a
energia cinética e a energia potencial de cada componente, assim como a funcéo de

Rayleigh do sistema.
4.2.2.1. Energia cinética do carro

Tomando como referencial a extremidade esquerda da viga, com 0 eixo X
orientado de acordo com a figura 20, e a base como negativa, a posi¢ao do carro pode

ser definida como:
Tearro = X ° [ (4-1)

Derivando em relacdo ao tempo:



Tearro = X1 (4.2)
De forma que a energia cinética fica:

2 "
_ M7%carro M-x?

Tearro = 5 = 5 (4-3)

4.2.2.2. Energia cinética da carga
A posicao da carga pode ser descrita por:
Tearga = (x —1-senf) -T+ (- cosB) -] (4.4)
Derivando em relacéo ao tempo:
Tearga = (X —[-sen® — 0 -1-cos0) -T+ (I - cos® — -0 - senf) -] (4.5)
De forma que a energia cinética fica:

Tearga = —29% = Z€ [x2 4 [2 + 1262 — 2103 cos 6 — 2iIsend] (4.6)

4.2.2.3. Energia potencial gravitacional da carga

Para a energia potencial fica (tomando a linha média da viga como referencial

para a energia potencial gravitacional):
Vg = Mcg-l-cos (4.7)
4.2.2.4. Energia potencial de deformacéo

Para a energia potencial de deformacéo do cabo:

k(l-19)?
vy =2k (4.8)

4.2.2.5. Funcéo de Rayleigh das perdas no cabo

A energia de dissipacdo no cabo pode ser escrita por:

B1i%2  B,02
R = 21—
2 + 2

(4.9)

4.2.2.6. Lagrangeana do sistema

A Lagrangeana, portanto:



M-x2
2

L=

+ % [x2 + 12 + 1262 — 210x cos 6 — 2ilsend] — M g -1-cosO —

(4.10)

k(l-1g)?
2

4.2.3. Equacoes diferenciais

4.23.1. Variavel x

(%) = (M+M,)x— M6 cosd+ isenf) (4.11)

%(%) = (M+M.)i%+ M, (—16 cos® + 162 send — [ send — 0 cos6 ) (4.12)

oL
==0 (4.13)
OR

==0 (4.14)

Qx = F (4.15)

Que resulta na equacdo diferencial:

(M + M) %+ M.(—18 cos8 + 1 6% sen — [ senf — (0 cosf ) = F,
(4.16)

Linearizando os termos em 6, considerando pequenos deslocamentos
angulares, tem-se que:

cos® ~1 ; senf ~60 ; 6%2=0
Resulta:

(M+M)x— M.(16 + 10 +216) = F, (4.17)

Que é a primeira equacdo diferencial do sistema.

4.2.3.2. Variavel |

(%) = M.(l - %senf) (4.18)



d (oL s L
E(E) = M.(l— XsenB — x6 cosf) (4.19)

o = M.(162 — Bxcosd — g cosd) —k(L—lo) (4.20)
OR _ i

=Bl (421

Q,=0 (4.22)

Que resulta na equacdo diferencial:

M (I — i senf — 162 + gcosd) +k(l—1y) + Byi= 0 (4.23)

Linearizando os termos em @, considerando pequenos deslocamentos
angulares, tem-se que:

cos® ~1 ; senf ~60 ; 6%2=0
Resulta:

M(1- %0+ g)+k(l-1y)+ B1l =0 (4.24)

Que é a segunda equacdo diferencial do sistema.

4.2.3.3. Variavel 0
oL . .
(55) = M.(%6 - 1 cost) (4.25)

%(Z_g) = M_.(2li0 + 126 — ix cos® — 1% cos@ + 1x0 senf) (4.26)

Z—; = Mc(lfcé sen® — xl cos + gl sen@) (4.27)
aR :
5= B,6 (4.28)



Qg =0 (4.29)

Que resulta na equacdo diferencial:

M.(21i0 + 126 — 1% cos@ — glsenf) + B,0 = 0 (4.30)

Linearizando os termos em @, considerando pequenos deslocamentos
angulares, tem-se que:

cos =1 ; senf =0
Resulta:
M (2116 + 1?6 — 1% — glO) + B,6 = 0 (4.31)

Que é a terceira equacao diferencial do sistema.
4.2.3.4. Sistema de equacdes

O sistema de equac0es fica definido, portanto:

(((M+M,)x— M.(16+ 16 +16) = F,

<M (1— %0+ g)+k(l—1p)+ Bl =0 (4.32)

\M (2116 + 1?6 — 1% — glo) + B,60 = 0
4.2.3.5. Demais simplificacdes

Considerando ainda que as oscila¢Bes nas variaveis “I” e “0” sdo pequenas em

torno do ponto de equilibrio, é possivel dizer que:
L= lgq+ 6l (4.33)
0 = 0q+ 66 (4.34)

Sendo que 1 e 60 pequenas perturbacdes em relacdo ao ponto de equilibrio. A
mesma hipdtese ndo € valida para a variavel “X”, pois ela sofrera grandes

deslocamentos.

As derivadas ficam:

[=loyg+ 8l ; I=1loq+ 8l ; 0=0,,+ 680 ; 6= 0,,+ 66 (435



Aplicando nos termos das equacOes temos que:

e [10=0 (4.36)
e [:6=0 (4.37)
o 1-0=1,-60 (4.38)

A primeira equacao fica portanto:

(M+M)x%— Ml 866 =Frp (4.39)
o [=561 (4.40)
o X0 =4%-60 (4.41)
o I—ly=lpg+ 8l—1, (4.42)
o = 6i (4.43)

A segunda equacado fica portanto:
M (61—%-60+g)+k(l,+ 6l—1y) + B8l =0 (4.44)

e 21i6=0 (4.45)
o 1260=12,-50 (4.46)
o IX¥= i lpg+ %61 (4.47)
e glo=g-l,,-60 (4.48)
e 6= 66 (4.49)

A terceira equacdo fica portanto:
M(12,-80 +%-log+ %-6l+g-1,,-80)+ B, 60 =0 (4.50)

O sistema de equac0es fica definido, portanto:

( (M+M)x— M.l -66 =Fy

{ M (61—%-80+g)+k(l,+ 8l—1y)+B8l=0 (4.51)

M (I2,-80 +5%-lyg+ %-8l+g-l,-60)+ B, 860 =0



Os termos X - 80 e x - 81 fazem com que o sistema ainda seja ndo-linear. A
solucdo proposta neste caso serd a de desprezar os termos, dado que sdo multiplicacGes

de derivadas e devem ser muito proximos a zero.
4.2.3.6. Sistema completo final

O sistema de equac0es final a ser resolvido fica portanto:

( (M+M)%— M.l 80 =Fr

M (8i+g)+k(leg+ 8l—1p) +B151=0 (4.52)

M (I2,-80 +%-l,g+g-loy-60)+ B, 850 =0
4.3. Solucéo do sistema completo sem controle
4.3.1. Espaco de estados
Para colocar o sistema em espaco de estados usa-se 0 seguinte artificio:
xX=q; x=q, ; 60=qs; 60=q,; Sl=qs ; 6l=qs (453)
O sistema de equacdes deduzido é:

( (M+Mc)'q2_Mc'leq'q4=FT

{ M.(qs+9)+k(leg+ q5—1)+B1-q5=0 (4.54)

\Mc(lgq'qél‘l'qz'leq+g'leq'q3)+ By q4=0

Na forma matricial o sistema pode ser representado portando:

1 0 0 0 0 01rq, 0 1 0 0 07 q
0 M+M;) 0 —(Mc-lg) 0 0 ||q, 0 0 0 0 0 0 |lg
0 0 0 0 0 MC q-4 =10 0 0 0 -k _Bl Q4 +
0 0 0 0 1 0ollg| |00 0 AL I
0 Ly, 0 2, 0o ollgl [0 0 —(& Ly —(M—C) o o |lgl

Fy
0

gt -]t 459

0

0

Neste sistema as variaveis ndo estdo desacopladas, para fazer isto sejam:



1 0 0 0 0 0
0 (M+M) 0 —(Mg-ly) 0 0
0 0 1 0 0 0
I=1o 0 0 0 0 M, (4.56)
0 0 0 0 1 0
0 leg 0 124 0 0]
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
K=o o 0 0 -k -B (4.57)
0 0 0 0 0 1
. _ (B
0 0 —(g-leg) (Mc) 0 0
0
[ F ]
M=| 0 I (4.58)
|—[Mc-g+k-(leq—lo)]
0
| 0 |

Fazemos entéo:

[N] = [T~ (4.59)

Entao:

[A] = [NI[K] ; [B] = [N][M] (4.60)

O sistema em espaco de estados, que é do formato:

{x} = [Al{x}+ [B] {u}  (4.61)
Fica portando:

170163 = U1K + 171 [(M] {u} (4.62)



qz|
qs
qs
de

y=[1 00 0 0 0]{°{+[0 0 0 0 0 Olu  (4.63)

4.3.2. Simulagdo do sistema completo sem controle

4.3.2.1. Sistema sem atenuagéo

O sistema foi simulado para o caso sem atenuacdo, ou Seja, as constantes:

dissipacéo do cabo (B1) e o atrito viscoso (Bz) foram consideradas nulas para que o

comportamento do sistema pudesse ser estudado. Abaixo seguem os resultados obtidos

para as varidveis de estado, dada uma excitacao do tipo impulso:

=

Deslocamento (x) [m]

Posicdo Angular (theta) [rad]

Resposta a impulso - Deslocamento 08 Resposta a impulso - Velocidade
1 .
0.9
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Figura 21 — Posicdo e velocidade do carro, para modelo completo sem atenuacéo

e T = (e
=TT Ry

Figura 22 — Posicdo e velocidade angulares, para modelo completo sem atenuagdo



Resposta a impulso - Distengéo do cabo

T

Distengéo do cabo (I) [cm]
o

| |

“0 1 2 3 4 5 6 71 8 9 10
Tempo (1) [s]

Figura 23 — Distensdo do cabo de aco para modelo completo sem atenuacao

Fica evidente a boa representacdo do sistema, que se comportou como era

esperado, com a carga oscilando de forma senoidal ap6s ser perturbada.
4.3.2.2. Sistema com atenuacao

O mesmo sistema foi testado, porém com as varidveis B: e B, diferentes de

zero. Neste caso, para uma excita¢do do tipo impulso, o resultado fica:

Resposta a impulso - Deslocamento Resposta a impulso - Velocidade
09 08

081 0.71

071 0.61

= — 0.5
- w

E 06 E 04l

:é' 0.5 g 0.3

é 044 2 0.2
O

g 0.3 2 01
—_ (=]

@ p2 sz 0

o -0.1

0.1 02

01 -0.31 u
-0.1 T r T T r r T T r -04 T T T r T T T r T
1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Tempo (1) [s] Tempo (1) [s]

Figura 24 — Posicdo e velocidade do carro, para modelo completo com atenuacéo



Resposta a impulso - Posicdo Angular Resposta a impulso - Velocidade Angular
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Figura 25 — Posicdo e velocidade angulares, para modelo completo com atenuacéo

Resposta a impulso - Distencéo do cabo

-0.5+

Distengéo do cabo () [cm]
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Figura 26 —Distensdo do cabo de a¢o para modelo completo com atenuagédo

Neste caso a insercdo da atenuacdo faz com que a carga inicie um movimento
de oscilagcdo ao ser perturbada, mas tem sua energia dissipada com o decorrer do
tempo, o que vai reduzindo a amplitude de oscilacdo até que ela fique praticamente
nula. Com isso verifica-se que o sistema tem o comportamento esperado e portanto
esta validado.

4.4. Modelo matematico simplificado sem controle
4.4.1. Deducéo do modelo simplificado

Partindo da Lagrangeana do sistema, agora considerando o cabo inextensivel e

portanto com todas as derivadas de | em relagdo ao tempo serdo nulas.



M-x2
2

k(l-1p)?
2

L= + % [x2 + 12 + 1262 — 210x cos @ — 2xisend] — M.g - |- cos6 —

(4.64)

Anulando as derivadas (e como | = Iy):

L= M-sz + = [x% + +1262 — 210x cos 6] — M g-1-cos®  (4.65)
4.4.1.1. Variavel x
d .
()= m+Mm)x (4.66)

d

y (a_L) = (M+ M) %+ M(—16 cosf +16?senf)  (4.67)

ox

daL

%_ g (4.68)
OR _

L (4.69)
Qx = F (4.70)

Que resulta na equacdo diferencial:

(M + M) %+ M.(—10 cos + 1 6? senf ) = F, (4.71)

Linearizando os termos em @, considerando pequenos deslocamentos

angulares, tem-se que:

cos@ ~1 ; senfh ~60 ; 620

Resulta:

(M+M,)x— MO =F, (4.72)

Que é a primeira equacdo diferencial do sistema.

44.1.2. Variavel 0

0 . .
(5) = M.(%6 — 1 cost) (4.73)



d

“ (6_L) = M,(1?6 — 1% cos6 + 1x0 send) (4.74)

GL]

oL A

i Mc(le senf gl sen@) (4.75)
R _

=5 =By (4.76)
Qg =0 (4.77)

Que resulta na equacdo diferencial:

M (126 — 1% cos® — glsenf) + B,6 = 0 (4.78)

Linearizando os termos em @, considerando pequenos deslocamentos

angulares, tem-se que:

cos =1 ; senf =0

Resulta:

M (1?0 — 1x — glo)+ B,6=0 (4.79)

Que é a segunda equacdo diferencial do sistema.
4.4.2. O modelo simplificado em espaco de estados

O problema ja em espaco de estados:

xX=q1; x=¢q; ; 0=q3 ; 0=gq, (480)

1 0 0 0 1[4, [8 (1) 8 8 1[4 0

0 M+M)/Me 0 —lol|l|qg

0 (M M)/Me O o | _ R O o2 | 1 |Frime| a8y
s B, qs 0

0 —1, 0 1,%1lg, 0 0 —(g-lp —(M—C) 44 0

Neste sistema as variaveis ndo estdo desacopladas, para fazer isto sejam:



1 0 0 0
0 (M+M/M. 0 —I
0 —l, 0 1,2
[0 1 0 0 1
10 0 0 0 |
K=|0 0 0 1 (4.83)
By
00—l -(2)
0
M=/l (a8a)
0

Fazemos entédo:

Entao:

[A] = [N][K] ; [B] = [N][M] (4.86)

O sistema em espaco de estados, que é do formato:

{x} = [Al{x} + [B] {u}  (4.87)
Fica portando:

170163 = U1K + 171 (M] {u) (4.88)

q1
q:
qs
qa

y=[1 0 0 0] +[0 0 0 O]u (4.89)

4.4.3. Simulacéo do sistema simplificado sem controle

O sistema simplificado também foi testado com as variaveis B e B> diferentes

de zero. Neste caso, para uma excita¢do do tipo impulso, o resultado fica:



Resposta a impulso - Deslocamento Resposta a impulso - Velocidade
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Figura 27 — Posigédo e velocidade do carro, para modelo simplificado com atenuacéo
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Figura 28 — Posicdo e velocidade angulares, para modelo simplificado com atenuacéo

Os resultados sdo muito similares aos obtidos no caso do modelo completo,

comparativos e explicacdo serdo mostrados em topicos posteriores.
4.5. Comparativo entre modelos

Primeiramente para entender as diferencgas entre os modelos, serdo observados
seus sistemas de equacBes. Sendo que para 0 modelo completo, 0 modelo matematico
é:

( (M+M)%— M1, 80 =Fy

{M (2, 80+ % log+ gl 80)+ B, 80 =0  (4.90)

\ M. (81+g)+k(log+ 81—1,)+B,81=0

E para 0 modelo simplificado:



(M+M)x— M. 1,-0 = Fy
(4.91)
M(l5-0+%1ly+g-1,-0)+ B,O=0

Nota-se portanto, que as duas primeiras equacdes de ambos sdo iguais, sendo
0 Unico ponto em que se diferem o comprimento I considerado. No caso do modelo
completo, é utilizado o comprimento considerando-se a deformacéo inicial, enquanto,

no modelo simplificado, € usado apenas o comprimento inicial.

O ponto mais importante de diferenciacéo entre os modelos é a terceira equagéo
do modelo completo, que rege 0 movimento (deformacdo) ao longo do cabo de aco.
Observando essa equacdo percebe-se que ela é independente das outras, pois s6 possui
constantes e termos em |. Ou seja, apos as simplificacGes impostas ao modelo ndo-

linear, a relagdo entre | e as outras variaveis foi perdida.

Abaixo estdo os vetores da diferenca entre estados para 0s dois modelos:

Resposta a impulso - Deslocamento Resposta a impulso - Velocidade
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Figura 29 — Diferengas entre os modelos — Posicdo e velocidade do carro
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Figura 30 — Diferencas entre os modelos — Posicdo e velocidade angulares



S&o pequenas diferencas nos vetores relacionados a posic¢do do carro. No caso

da posicéo angular, ha uma pequena diferenca de periodo de oscilacéo.



5. CONTROLE
5.1. Definicdo do problema de programacao linear
5.1.1. Determinacéao da fungéo objetivo

O critério para a otimizacdo do sistema sera a movimentacdo feita entre dois
pontos, de forma que seja feito o menor esfor¢o de controle e no menor tempo possivel.
Como foi explicado na introducdo tedrica, dado o sistema colocado em espaco de
estados, as condicdes iniciais e finais, as equacdes sdo rearranjadas na forma; ver Eq.
5.3

GU =xm) — Fxe) (5.1)
Com as definicdes:
F= A" (5.2)
G =[A®"VB An-2p A=3p ... A1 A°B] (5.3)

U(o)
U(r)

|
U=| (5.4)

T

|u(n—2)
lu(n—l)J
Dessa forma, os estados inicial e final estdo previamente definidos, de modo
que a variavel livre do sistema é a lei de controle, ou seja, as entradas de controle u(1),
u(2), ..., u(t). Com isso fica claro que ndo é possivel inserir as variaveis de estado na
funcdo objetivo, sendo que se houver limites esses devem ser verificados ao fim do
processo. Para a determinacdo do tempo minimo, o processo € externo a PL e iterativo:
partindo-se de um intervalo T = 15ms e adicionando um intervalo incremental, até que
todas as condigdes impostas sejam atendidas. Entendidos todos esses pontos, pode-se

definir a funcao objetivo da PL.
min(J) = [u(D)|+ [u@)|+ -+ [ulN - D]+ [u(@®)] (5.5)

Como visto anteriormente, problema do médulo na fungéo objetivo pode ser
resolvida com a insercdo de N variaveis ficticias e a introdugdo de 2N desigualdades

ao problema, ficando:



min(J) = u(1+N)+u(+N)+--+u(2N—-1) +u(2N) (5.6)
Sujeito a:

u(l) <u(l+N) ; —u(l) <u(l+N)

u(2) <u(2+N) ; —u(2) <u(2+N)

(5.7)
u(N-1)<u(2N-1) ; —-u(N—-1)<u(2N-1)
u(N) < u(2N) ; —u(N) < u(2N)
5.1.2. Determinago das restricdes

Como restricdes, além das introduzidas pelo artificio da funcdo objetivo e das
restricoes do sistema, representadas pela equagdo GU = x¢,) — Fx(p), Serdo

introduzidas restri¢es fisicas ao sistema como em [5]:
Velocidade méxima do carro = 2m/s. « v,q, < 2m/s  (5.8)
Aceleracdo maxima do carro = 1m/s2. = a,q < 1m/s* (5.9)
5.1.3. Condigdes iniciais e finais

O sistema deve partir do repouso e a posi¢cdo inicial sera tomada como
referéncia. Na posicéo final a velocidade de oscilacdo da carga deve ser nula, assim
como esta deve estar na posicdo vertical. O carro devera estar em repouso na posi¢do

final. Assim, os vetores para as condicdes inicial e final sdo:
xo=[000000]" (5.10)
x;=[P00000]" (5.11)
A posicdo final testada sera P = 2,2m.
5.1.4. Descrigdo completa no formato de PL
5.14.1. Modelo completo no formato de PL
A descri¢cdo completa no formato de PL:

min(J) = u(1+N)+u+N)+--+u@2N-1)+u2N) (5.12)



Sujeito a:

GU = X(n) — FX(O) (5.13)

M, M.
u@Wsul+M <17 5 —u(D) su@+N) <1+
t t

M, M,
u(Z)Su(2+N)§1*? ; —U(Z)Su(Z-f-N)Sl*F
t t

(5.14)

M, M,
t t

M, M,
u(N) <u(2N) <1 * T —u(N) <u(2N) <1 *

t t
xo=[000000] (5.15)
x;=[2200000] (5.16)
5.1.4.2. Modelo simplificado no formato de PL

O modelo simplificado no formato de PL é exatamente igual ao do modelo
completo, sendo que os vetores de estado iniciais e finais sdo de dimensdo 4x1 e as

matrizes A e B do sistema sdo as matrizes para o sistema simplificado.
5.2. Simulagéo do problema com controle

Para a determinacdo do tempo minimo, sera usado um intervalo de tempo
discreto T = 15ms. Inicialmente N=1 e a possibilidade de solucéo sera verificada. Em
caso negativo sera inserido um novo instante de tempo e o sistema testado novamente

e assim sucessivamente até que o sistema seja soltvel.
5.2.1. Resolucdo da PL para o modelo completo

A otimizagdo do modelo completo com a programacdo linear mostrou-se
insoldvel. Investigando a causa, foi encontrada uma justificativa: na definicdo da PL o
estado final é pré-determinado, porém como a equacdo que define a dindmica da
deformacéo do cabo de aco é independente de X, e como ndo ha entrada de controle
em |, ndo é possivel controlar a deformacao ao longo do histérico de controle.



Desta forma, torna-se impossivel resolver o problema de controle étimo para o
modelo completo usando programacao linear. A solucdo serd encontrada para o
modelo simplificado e o historico de controle definido serd aplicado no modelo
completo. Como sera visto, o resultado ndo serd satisfatorio e outra abordagem sera

adotada.
5.2.2. Resolucéo da PL para o modelo simplificado

Para o modelo simplificado, o numero minimo de intervalos necessarios para
garantir a convergéncia da solucdo de PL € de N = 213, que resulta num tempo total
de movimentacdo de 3,2 segundos. Os resultados para a historia de controle e para 0s

estados sdo mostrados a seguir:

U - controle

Entradas de controle

05 1 15 2 25 3 35 4 45
Tempo (s)

Posicéo do carro e posicdo angular da carga

Estados

Tempo (s) )

Figura 31 — Controle, Posicdo do carro e posicdo angular — Modelo simplificado

A simulagéo foi estendida até 300 instantes de tempo, com entradas de controle
nulas para instantes a partir do 214 para que fosse possivel observar o0 comportamento

da carga ao final do movimento.



Posigdo do carro [m)

Posigao angular da carga [rad)

Posicéo do carro X Tempo Velocidade do carro X Tempo
T T T T T 2 T T T T

Velocidade do carro [mfs]

0 05 1 15 2 25 3 35 4 45 ] 05 1 15 2 25 3 35 4 45
Tempo (s) Tempo (s)

Posicéo angular da carga X Tempo Velocidade angular da carga X Tempo

Velocidade angular da carga [rad/s]

05 1 15 2 25 3 35 4 45 0 05 1 15 2 25 3 35 4 45
Tempo (s) Tempo (s)

Figura 32 — Variaveis de estado — Modelo simplificado

52.2.1. Aplicagdo da historia de controle para o modelo completo

Aplicando a historia de controle obtida para 0 modelo simplificado agora no

modelo completo, foram obtidos os resultados a seguir:

Estados

Posigdo do carro [m]

Posicéo do carro e posicdo angular da carga

25 I I |

Tempo (s)

Figura 33 — Posicdo do carro e posicdo angular — Modelo completo

Posigédo do carro X Tempo Velocidade do carro X Tempo
T T T T T T T T T T

Velocidade do carro [m/s]

0 05 1 15 2 25 3 35 4 45 o 05 1 15 2 25 3 35 4 45
Tempo (s) Tempo (s)

Figura 34 — Posicéo e velocidade do carro, para modelo completo com controle



Posicéo angular da carga X Tempo Velocidade angular da carga X Tempo
T T T T T T T T T

1 T T

Posigdo angular da carga [rad)]

Velocidade angular da carga [radfs]

05 1 15 2 25 3 15 4 4.5 o 0.5 1 15 2 25 3 35 4 4.5
Tempo (s) Tempo (s)

Figura 35 — Posicéo e velocidade angulares, para modelo completo com controle

A concluséo a que se chega é que o modelo simplificado pode néo trazer bons
resultados para o posicionamento da carga no caso de o cabo ter alguma deformacéo
(neste caso o0 cabo em equilibrio tem uma distensdo de 8% em relacdo ao comprimento
original). Isto ocorre pois ao alterar o comprimento do cabo muda-se o periodo de

oscilacéo da carga.

A seguir estd demonstrada uma tentativa de controle do modelo completo,
porém sem considerar a equacdo que relaciona a dindmica ao longo do comprimento
do cabo (que é independente), ou seja, serdo utilizadas apenas duas das equacdes de
movimento, que relacionam a posicdo do carro e angulo com o comprimento de

equilibrio do cabo (lembrando que o problema usando as trés equacdes é insoluvel).

U - controle

Entradas de controle

Tempo (s)

Posigéo do carro e posigdo angular da carga

Estados

Tempo (s)

Figura 36 — Controle, posi¢do do carro e posicdo angular — Modelo completo



Paosicédo do carro X Tempo Velocidade do carro X Tempo
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Figura 37 — Variaveis de estado para modelo completo

Neste caso N = 213 e o tempo total de movimentacdo foi de T = 3,2 segundos.
ApoOs este periodo a carga se estabiliza na posi¢do final e permanece sem oscilacdo

angular como é desejado.

5.2.2.2. Aplicacdo da histéria de controle para o modelo completo —

Pequena deformacao

Para verificar o impacto da deformacdo do cabo, o histérico de controle do
modelo simples serad aplicado ao modelo completo, porém neste caso a constante de
elasticidade do cabo sera aumentada de forma a reduzir a extensdo do cabo a 2% do

original. Os resultados s&o mostrados a seguir.

Nota-se que a estabilidade ao fim do percurso ainda ndo foi garantida, porém é
evidente a melhora na oscilacdo da carga com o fim da entrada de controle. De
qualquer forma, com a deformacgéo do cabo de ago, o controle usando um modelo
matematico que ndo considera este aspecto do modelo fisico ndo garantird o melhor

resultado.
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Figura 38 — Controle, posi¢do do carro e posicdo angular — Modelo completo
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Figura 39 — Variaveis de estado para modelo completo



6. RESULTADOS

6.1. Modelos matematicos obtidos

Partindo da dedugdo geral do modelo fisico foram deduzidos sistemas de
equacBes matematicas que representassem tal modelo. Sem aplicar nenhuma
simplificacéo foi deduzido o modelo ndo-linear. A partir dele foram inseridas hipoteses

simplificadoras para a obtengdo dos outros modelos.
6.1.1. Modelo ndo-linear
O modelo matematico inicialmente obtido, que é n&o linear, é:
((M+M) %+ M (—10 cos@ + 1 6% send — I send — 10 cos® ) = F,
M (i— xsend— 162 + gcos8) +k(l—1y) + Byl= 0 (6.1)

\ M (2116 + 1?8 — 1% cos® — glsend) + B,6 = 0

6.1.2. Modelo linear completo

Aplicando simplificacbes para pequenos angulos, desprezando termos
quadréticos e usando a metodologia de pequenos disturbios para as variaveis nas quais

isso faz sentido, o modelo linear obtido é:

( (M+M)%— M, l,,-60 = Fr

M (12,80 +% -1+ g-log-60)+ B, 56 =0 (6.2)

\ M (81+g)+k(leq+ 81—1,)+B,81l=0

6.1.3. Modelo linear simplificado

Para o0 mesmo modelo néo-linear, aplicando simplificacbes para pequenos
angulos, desprezando termos quadraticos e considerando as derivadas em relagdo a

variavel | nulas (cabo inextensivel), 0 modelo resultante fica:



M+M)x— M, ly-0 =Fp
(6.3)
M(l5:0+%1,+g-1,-0)+ B,6=0

6.2. Historia de controle obtida

Para a movimentacdo com as condicdes definidas no problema e usando o

modelo matematico simplificado a historia de controle obtida foi:

U - controle
T T

Entradas de controle

0 05 1 2 25 3 35 4 45

Tempo (s)
Figura 40 — Histdria de controle para modelo simplificado

No caso do modelo matematico completo a historia de controle obtida foi

levemente diferente;

U - controle
I

Entradas de controle

45
Tempo (s)

Figura 41 — Histéria de controle para modelo completo

6.3. Historia de controle aplicada aos modelos matematicos
6.3.1. Modelo linear completo
6.3.1.1. Histdria de controle para o modelo simplificado

Historia de controle, obtida na resolu¢do da PL do modelo simplificado,

aplicada ao modelo completo.
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Figura 42 —Variaveis de estado do modelo completo — Controle para modelo simplificado
6.3.1.2. Historia de controle para o modelo completo

Historia de controle, obtida na resolucdo da PL do modelo completo, aplicada

ao modelo completo.
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Figura 43 —Variaveis de estado do modelo completo — Controle para modelo completo

6.3.2. Modelo linear simplificado



Historia de controle, obtida na resolucdo da PL do modelo simplificado,

aplicada ao modelo simplificado.

Posicdo do carro X Tempo Velocidade do carro X Tempo
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Figura 44 —Variaveis de estado do modelo simplificado — Controle para modelo
simplificado



7. CONCLUSOES

Ap0s todas as dificuldades enfrentadas ao longo da elaboracdo do estudo e da

analise de todos os resultados, algumas conclusdes podem ser feitas:

O modelo € nédo-linear: ficou claro que a tentativa de linearizacdo do
modelo faz com que as varidveis fiquem desacopladas, o que néao é
verdadeiro para 0 modelo fisico. As simplificaces fizeram com que a
equacdo que exibe a dindmica de distensdo do cabo de ago se tornasse
independente das demais e portanto a interferéncia que isso possa ter
no movimento angular da carga nao foi capturado.

Ao linearizar o modelo sdo necessarias apenas duas equagdes: como
mencionado anteriormente, a terceira equacdo de movimento nada diz
a respeito da posicdo do carro e da posicdo angular da carga, deste
modo, se o estudo for a respeito da oscilacdo angular e do
posicionamento, somente duas equaces sao relevantes.

Os modelos matematicos do sistema simplificado e completo séo
semelhantes: ao eliminar a terceira equagdo os dois sistemas ficam
muito similares, a Unica diferenca entre eles € o0 comprimento do cabo
utilizado.

Contemplar ou ndo a distensdo do cabo faz diferenga: os testes de
controle mostram que existem diferencas nos resultados ao se utilizar o
comprimento original ou o comprimento de equilibrio do cabo
suportando a carga.

A deformacdo é o que interessa: conforme se reduz a deformacéao
percentual do comprimento de equilibrio em relagdo ao comprimento
original, mais proximos ficam os modelos, o que é esperado.

O modelo simplificado foi testado por [5] num modelo fisico e obteve
resultados excelentes. Porém o prototipo utilizava uma pequena barra
de aco como cabo, além de uma carga de massa extremamente pequena,
portanto as hipoteses adotadas por ele sdo muito aderentes ao protétipo

fisico.



e Dado que ndo ha custo adicional em relagdo ao controlador, é
interessante sempre utilizar o modelo matematico considerando-se o
comprimento do cabo j& deformado, de forma a garantir uma

movimentacao mais estavel e um resultado mais proximo do real.



8. SUGESTOES DE CONTINUIDADE

A seguir sdo listadas algumas sugestdes de continuidade para o estudo:

Testar os resultados deste trabalno em um modelo fisico ou prototipo
para confirmar a veracidade.

Fazer uma simulacdo das historias de controle no modelo nédo-linear
para entender qual a dindmica que ele adotaria. Adicionalmente pode
ser interessante resolver o problema de controle 6timo com técnicas de
controle n&o-linear.

Estender o estudo para guindastes, de forma a contemplar a elasticidade
da viga, que se curva conforma a carga se movimenta para a ponta da
lanca. O modelo fisico e o respectivo modelo matematico sdo

mostrados abaixo (cabo inextensivel).

: :

T e Y
5 'y
fw]
_ﬂW\_
O

Figura 45 — Modelo de viga de guindaste com elasticidade

(M+M)* g*x*

M+M,)x— MO — T

=0

\M+M)8— M1-6-06+M+M)g=0 (71

\ 0-x—60=0
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10. APENDICE A - PROGRAMAS

I Rubens Meneghini Terra

I

I/ Projeto de Conclusao de curso

// Simulacao Linear das equac8es de movimento

I/ SISTEMA SIMPLIFICADO SEM ATUACAO E CONTROLE
// ENTRADA IMPULSO

"

/ILIMPA

clear

0=9.8;
pi=3.1415;

M= 150;
Mc= 1000;

k = 1e5;

B1 =300;
B2 =100;

li=0.7,
leq = li + Mc*g/k;

Ft =100;

cl = (M+Mc)/Mc;

c2 = -li;

c3 =-li;

cd = li*li;

c5 = -g*li;
c6 = -B2/Mc;
c7 = Ft/Mc;

"

1

I
I
I
I



J=[1000;
0cl0cz;
0010;
0c30c4];

K=[0100:

0000;

0001,

00 c5 c6];

L = [0;c7;0;0];

M = inv(J);

A=M*K;

B=M*L;

c=[1000];

funcCrane=syslin('c',A,B,C,D);

x0=0;
t=0:0.01:10;

/I Simulando o sistema usando o comando csim
[x]=csim('impuls',t,funcCrane);
xset('window',1)

xset(‘thickness',3)

xset(‘font size',3)

plot(t,x,2);



xtitle("Resposta a impulso - Deslocamento™,"Tempo (t) [s]","Deslocamento (x) [m]");

c=[0100];

/[Definicdo do sistema

funcCrane=syslin('c',A,B,C,D);

x0=0;
t=0:0.01:10;

/I Simulando o sistema usando o comando csim
[x]=csim('impuls',t,funcCrane);
xset('window',2)

xset(‘thickness',3)

xset(‘font size',3)

plot(t,x,1);

xtitle("Resposta a impulso - Velocidade","Tempo (t) [s]","Velocidade (X)) [m/s]"™);

7 — ANGULO
C=[0010];

/IDefinicdo do sistema

funcCrane=syslin('c',A,B,C,D);

x0=0;
t=0:0.01:10;

/I Simulando o sistema usando o comando csim
[x]=csim('impuls',t,funcCrane);
xset('window',3)

xset(‘thickness',3)

xset(‘font size',3)

plot(t,x,1);



xtitle("Resposta a impulso - Posicdo Angular”,"Tempo (t) [s]","Posicdo Angular (theta)
[rad]");

S — VELOCIDADE ANGULAR
C=[0001];

/[Definicdo do sistema

funcCrane=syslin('c',A,B,C,D);

x0=0;
t=0:0.01:10;

/I Simulando o sistema usando o comando csim
[x]=csim('impuls',t,funcCrane);
xset('window',4)

xset(‘thickness',3)

xset(‘font size',3)

plot(t,x,1);

xtitle("Resposta a impulso - Velocidade Angular","Tempo (t) [s]","Velocidade Angular
(theta”) [rad/s]™);



I Rubens Meneghini Terra Il
I I
I/ Projeto de Conclusao de curso I
/l Simulacao Linear das equac8es de movimento I
/l SISTEMA COMPLETO SEM ATUACAO E CONTROLE I
/Il ENTRADA IMPULSO I
1 1

/ILIMPA
clear

S —— CONSTANTES DE PROJETO
0=9.8;
pi=3.1415;

M= 150;
Mc= 1000;

k = 1e5;

B1 = 300;
B2 =100;

li=0.7;
leq = li + Mc*g/k;

Ft =100;

[ -=mmmmmmeeee CONSTANTES PARA ESPACO DE ESTADOS --------------
cl = (M+Mc)/Mc;
c2 =-leq;
c3 =-leq;
c4 = leg*leq;
c5 = -g*leq;
c6 = -B2/Mc;
c7 = Ft/Mc;
c8=1;
c9= -k/Mc;
c10 = -B1/Mc;
cll= -((k/Mc*(leg-li))+0);
[ ===mmmm e MATRIZES PARA O SISTEMA LINEAR --------------
J=[100000;
0cl0c200;
001000;
0c30c400;
000010;
00000 c8];

K=[010000;
000000;
000100;
00c5¢c600;
000001;
0000 c9ci0j;

L =[0;c7,;0;0;0;c11];

M =inv(J);



A = M*K;

B=M*L;

C=[10000Q];

D=0;

I =mmmmmmee DEFINICAO DO SISTEMA ---------------
funcCrane=syslin('c',A,B,C,D);

x0=0;

t=0:0.001:10;

/I Simulando o sistema usando o comando csim

[X]=csim(‘impuls',t,funcCrane);

xset(‘'window',1)

xset('thickness',3)

xset(‘font size',3)

plot(t,x,1);

xtitle("Resposta a impulso - Deslocamento”,"Tempo (1) [s]","Deslocamento (x) [m]");

[/ — VELOCIDADE -----n-xmenmennen
C=[010000];

//Definicéo do sistema
funcCrane=syslin('c',A,B,C,D);

Xx0=0;
t=0:0.001:10;

[/l Simulando o sistema usando o comando csim

[X]=csim(‘impuls',t,funcCrane);

xset('window',2)

xset('thickness',3)

xset(‘font size',3)

plot(t,x,1);

xtitle("Resposta a impulso - Velocidade","Tempo (t) [s]","Velocidade (x") [m/s]");

R —— P\ \[c]U] o ————
C=[001000];

//Definicéo do sistema
funcCrane=syslin('c',A,B,C,D);

x0=0;
t=0:0.01:10;

/l Simulando o sistema usando o comando csim

[X]=csim(‘impuls',t,funcCrane);

xset(‘window',3)

xset(‘thickness',3)

xset(‘font size',3)

plot(t,x,1);

xtitle("Resposta a impulso - Posicdo Angular","Tempo (t) [s]","Posicao Angular (theta) [rad]");



C=[000100]

//Definicdo do sistema
funcCrane=syslin('c',A,B,C,D);

X0=0;
t=0:0.001:10;

/l Simulando o sistema usando o comando csim

[X]=csim(impuls',t,funcCrane);

xset('window',4)

xset('thickness',3)

xset(‘font size',3)

plot(t,x,1);

xtitle("Resposta a impulso - Velocidade Angular”,"Tempo (t) [s]","Velocidade Angular (theta")
[rad/s]");

J e DISTENCAO DO CABO DE ACO ------------=-——-
C=[00001 0]

//Definic@o do sistema
funcCrane=syslin('c',A,B,C,D);

X0=0;
t=0:0.001:10;

/I Simulando o sistema usando o comando csim

[X]=csim(‘impuls',t,funcCrane);

xset(‘'window',5)

xset('thickness',3)

xset(‘font size',3)

plot(t,x,1);

xtitle("Resposta a impulso - Disten¢éo do cabo","Tempo (t) [s]","Distencao do cabo (I) [m]");



%— Rubens Meneghini Terra -%

%$- Projeto de Conclusao de curso -%
%— Simulacdo Linear das equagdes de movimento -%
%- SISTEMA SIMPLES COM ATUACAO E COM CONTROLE -%
%- CONTROLE OTIMO -%
SLIMPA

clear, clc, clf, format short e

F———————- CONSTANTES DE PROJETO -—-—————-—-
pi=3.1415;

g=9.8

M= 150;

Mc= 1000;

k = 1le5;

Bl = 300;

B2 = 100;

11 = 1.2;

leg = 1i + Mc*g/k;

Ft = 100;
gm——————— RESTRICOES FISICAS DO MODELO —-—-————--—-
xi [0OO0 0 0]"'; %$estado inicial
xf = [2.2 0 0 0]"'; %estado final
xM = [2.6 2 10*pi/180 10]1"'; $max valores do estado em modulo
uM = [10]; $max valor do controle em modulo
T =1.5/100; %constante de tempo de amostragem
$ —————- CONSTANTES PARA ESPACO DE ESTADOS —-—-——-———-—-
cl (M+Mc) /Mc;
c2 = -1i;
c3 = -1i;
cd = 1i*1li;
c5 = -g*li;
c6 = -B2/Mc;
c7 = Ft/Mc;
$ ————— MATRIZES PARA O SISTEMA LINEAR --——————-—
W= [1 0 0 O;
0 cl 0 c2;
001 0;
0 c3 0 c4];
K= [010 0;
000 0;
000 1;
0 0 c5 c6];



G = M*K;

H=M*L;

I=[1 0 0 0];

J=0;

[A, B, C, D] = ¢c2dm(G,H,I,d,T,"'zoh'); S%Sconverte para o tempo
discreto

n = length(A);

N = 1; %$define a quant. de intervalos (serd iterado)
flag = 0; %indica que nao atingiu a condicao de tempo minimo

while flag == 0

t total = 300*T;
Funcao Objetivo J
Criando N variaveis

o

4 4 4

o°

u’ ficticias, mas do vetor "u’ so usamos

as N

o\

primeiras na simulacao e as N ultimas na minimizacao do
controle
Fazendo J = u(N+1l) + u(N+2) +...+ u(2N)

o°

f = [zeros(N,1);ones(N,1)]; %Define a funcao objetivo
% Incluindo as restricoes:
$ u(l) <= u(N +1); ?2u(l) <= u(N +1)
$ u(2) <= u(N +2); 2u(2) <= u(N +2)
% u(N) <= u(N +N);?2u(N) <= u(N +N)
for 1 =1 : N

al(i, i) = 1;

al(i, 1i+N) = -1;

a2((i, i) = -1;

a2 (i, i+N) = -1;
end
a = [al

azl;

b = [zeros(N,1)

% Condig¢des de igualdade da PL (Funcoes G e F)

Aeq = [];
for 1 = (N-1) : -1 : O
Aeq = [Aeg A™i*B];
end
Aeg = [Aeq zeros(n,N)]; %Matriz do lado esquerdo da igualdade

beqg = xf - (A"N) * xi; %Vetor do lado direito da igualdade

% Restricoes de maximo no vetor de controle (incognitas)
% lul <= uM

LB = -uM*ones (2*N,1);

UB = +uM*ones (2*N,1);

———-—-—-- Resolucao do sistema linear
u, fval,exitflag,output] = linprog(f,a,b,Aeq,beq,LB,UB);

o0 — oP



if exitflag ==1 || N >= t total/T

flag = 1;
else
N=N+1;
end
end
$ ————— Simulacao do sistema resultante —--—-————--—-

t RP = 0 : t total/T;
t RP = t RP';

% Do vetor de controle usamos apenas os N primeiros valores
u RP = [0];
for i=1 : +1 : N

u RP = [u RP u(i)];
end
$Ate o fim do tempo total de simulacao, a entrada de controle é nula
u RP = [u RP zeros(l , t total/T-N)];
u RP = u_RP';

$Define o sistema em tempo discreto
Sys= ss(A, B, C, D,I[1]1);

$Simula o sistema linear
[x,t,y]=1lsim(sys,u RP,t RP,xi, 'zoh');

$Plota o resultado da PL
if exitflag > 0

texto = 'O.K.CONVERGIU!!!!";
elseif exitflag ==

texto = 'NAO CONVERGIU';
else

texto = ' <<< INSOLUVEL >>>';
end

disp (texto)
disp('|ul|+|u2|+:::+|uN| =")
disp(norm(u(l : N),1))
figure('Color',[1 1 1]);

posicao= y(l:t total/T+1,1);
velocidade= y(l:t total/T+1,2);
theta= y(l:t_total/T+1,3);
thetaponto= y(l:t total/T+1,4);
grafico = [posicao, thetal;

subplot (2,1,2)
plot(t,grafico,'-"', 'LineWidth',3), grid, hold on;
title('Posicdo do carro e posigédo angular da carga')
xlabel (texto)
legend('x', 'theta')
xlabel ('Instantes de tempo');
ylabel ('Estados');
subplot (2,1,1)
stairs(t, u RP,'- m', 'LineWidth',2), grid, hold on;
title('U - controle')
xlabel (texto)
xlabel ('Instantes de tempo');



ylabel ('Entradas de controle');

figure('Color', [1 1 171);
subplot (2,2,1)
plot (t,posicao,'-', 'LineWidth',3), grid, hold on;
title ('Posicdo do carro X Tempo')
xlabel ('Instantes de tempo');
ylabel ('Posigdo do carro [m]');
subplot (2,2,2)
plot(t, velocidade,'-', 'LineWidth',3), grid, hold on;
title ('Velocidade do carro X Tempo')
xlabel ('Instantes de tempo');
ylabel ('Velocidade do carro [m/s]');
subplot (2,2, 3)
plot(t, theta,'-', 'LineWidth',3), grid, hold on;
title ('Posicdo angular da carga X Tempo')
xlabel ('Instantes de tempo');
ylabel ('Posigdo angular da carga [rad]');
subplot (2,2,4)
plot (t, thetaponto,'-"', 'LineWidth',3), grid, hold on;
title('Velocidade angular da carga X Tempo')
xlabel ('Instantes de tempo');
ylabel ('Velocidade angular da carga [rad/s]');



