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RESUMO 

 

TERRA, R.M. Aplicação de controle ótimo para a movimentação plana 

de carga em pontes rolantes. 2014. 87p. Dissertação (Conclusão de curso). - Escola 

Politécnica da Universidade de São Paulo, Departamento de Engenharia Mecânica, 

São Paulo, 2013. 

O trabalho propõe-se a estudar o problema de movimentação plana de carga 

em uma ponte rolante. No modelo físico considera-se que a viga de sustentação é rígida 

e que o cabo de movimentação é flexível. O projeto do controlador é desenvolvido, 

com o objetivo de fazer o transporte em tempo mínimo, com oscilação limitada e 

aplicando-se o menor esforço de controle durante o trajeto. 

 

 

  



 

ABSTRACT 

 

TERRA, R.M. Application of optimum control for plane drive on gantry 

cranes. 2014. 87p. Dissertação (Conclusão de curso). - Escola Politécnica da 

Universidade de São Paulo, Departamento de Engenharia Mecânica, São Paulo, 

2013. 

This work proposes to study the plane drive on gantry cranes. The physical 

model considers a rigid beam and a flexible cable as components of the crane. The 

controller project development, with minimum-time, minimum-control energy and 

limited oscillation.   
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1. INTRODUÇÃO 

1.1. Pontes Rolantes 

A ponte rolante é um equipamento utilizado para a elevação e movimentação 

de cargas e materiais pesados. Pode descarregar e carregar containers, além de 

organizar materiais pesados em grandes depósitos. Seu uso é comum nas indústrias: 

metal mecânica e de mineração, principalmente.  

Na movimentação de carga por uma ponte rolante, três movimentos são 

possíveis: o movimento vertical de içamento e descida da carga, operado pela extensão 

ou recolhimento dos cabos, o movimento longitudinal ao longo do eixo da viga, 

causado pela movimentação do carro, e o movimento transversal em relação ao eixo 

da viga, que é feito sobre os trilhos de apoio da ponte rolante. Normalmente a 

movimentação possui três etapas: içamento da carga, movimentação até o ponto 

desejado, dado por uma composição de movimentos transversais e longitudinais, e por 

último a descida da carga no ponto final.  

 

Figura 1 – Ponte Rolante 

Para que a movimentação seja eficiente, o processo deve ser rápido, para 

proporcionar ganho de tempo, economia nos custos totais, produtividade e 

competitividade. Além disso, deve-se garantir que as oscilações da carga serão 



 

mínimas para manter a integridade da carga, componentes da ponte rolante, 

operadores, etc. 

Porém, quanto maior a aceleração imposta ao carro, maior a oscilação da carga, 

de forma que os objetivos de reduzir o tempo de operação e a oscilação da carga se 

tornam altamente conflitantes. 

1.1.1. Componentes da ponte rolante 

Todas as pontes rolantes possuem as mesmas peças fundamentais:  

 Viga de apoio, que fica apoiada sobre os trilhos, e que serve de apoio ao carro; 

 Carro, que realiza a movimentação da carga na direção longitudinal ao longo 

da viga; 

 Talha elétrica, que realiza o movimento vertical da carga, é composta de cabos 

de aço e motor; 

 Freios; 

 Cabine de comando. 

 

Figura 2 – Ponte Rolante realizando transporte 



 

1.2. Referências e estudos 

1.2.1. Zairulazha Bin Zainal, março 2005 

Em 2005 ZAIRULAZHA BIN ZAINAL realizou um estudo sobre a vibração 

de pontes rolantes e como minimizá-las. O trabalho possui ideias que podem ser aqui 

aproveitadas. Na abordagem de ZAIRULAZHA BIN ZAINAL, existe a limitação de 

termos o comprimento l fixo, ou seja, o cabo é considerado rígido. Além disso, 

movimentos de subida e descida da carga não foram testados neste caso. De qualquer 

forma o controle do movimento plano da carga para a translação do carro ao longo da 

lança foi estudado. 

 

 

Figura 3 – Modelo de ponte rolante proposta por ZAIRULAZHA BIN ZAINAL 

1.2.2.  Edson José Cardoso de Souza, 2009 

Em 2009, Edson José Cardoso de Souza apresentou em sua tese de mestrado 

pela Escola Politécnica, um trabalho de título: “Controle anti-oscilatório de tempo 

mínimo para guindaste usando a programação linear”, o qual, trata da vibração em 

guindastes, e propõe métodos para minimizá-la. Como a viga foi considerada rígida, a 

modelagem pode ser aproveitada para uma ponte rolante, pois o modelo físico pode 

ser representado de forma idêntica. 



 

 

Figura 4 - Modelo de guindaste, proposto por Edson José Cardoso de Souza 

1.2.3.  Grupo de Mecânica Aplicada, UFRGS 

Um grupo com diversos participantes, dentre eles professores e mestrandos da 

UFRGS, realizaram um trabalho a respeito de guindastes, que levava em conta, 

inclusive, a resposta do guindaste quando solicitado pelo vento. O trabalho possui 

diversas informações úteis no estudo a ser aqui realizado. 

 

Figura 5 - Esquema de guindaste, por grupo de mecânica aplicada, ufrgs 

1.2.4.  Quanser 3DOF Crane 

A empresa Quanser possui um guindaste de torre em escala reduzida, que 

permite a realização de testes físicos, sem o risco e custos de um modelo em escala 



 

real. Na ficha técnica do modelo, existem várias informações dimensionais, que podem 

ser usadas nas simulações numéricas, para garantir que os dados possuem 

proporcionalidade e são aderentes aos de guindastes reais. 

 

Figura 6 - Modelo de guindaste Quanser 3DOF Crane 

1.2.5. Grupo de alunos da Escola Politécnica, 2010 

Em 2010 um grupo formado por Bruno Medeiros Leite, José Moreira de Souza 

Neto, Luciano de Almeida Nagata e Yuji Fugita Sasaki, realizou em seu trabalho da 

disciplina de Modelagem de Sistemas Dinâmicos (e posteriormente, em 2011, na 

disciplina de controle) a modelagem e uma série de simulações para um guindaste do 

tipo torre.  

 

Figura 7 - Modelo de guindaste para movimento tridimensional  



 

Neste trabalho, foi considerada a elasticidade do cabo, porém não da estrutura, 

o que se adere à proposta de desenvolvimento deste, além de fornecer ricas 

informações, é uma importante base comparativa de dados. A bibliografia utilizada 

pelo grupo será consultada ao longo do projeto. 

 

Figura 8 - Modelo de cabo de aço com elasticidade 

 

1.2.6. Luiz Vasco Puglia, 2011 

Luiz Vasco Puglia, orientado por Fabrizio Leonardi, realizou um estudo no 

qual modelou uma ponte rolante, considerando sua estrutura rígida. 

O modelo é composto por um carro com rodas, que desliza sobre trilhos e 

apresenta deslocamento apenas na direção da viga. Preso ao carro existe um sistema 

de içamento de carga, permitindo variar a distância da massa ao carro. Desta forma, a 

planta possui três graus de liberdade, a posição do carro, o ângulo formado entre a 

vertical e o cabo de suspensão da massa e a distância entre a massa e o carro. 



 

 

Figura 9 - Trajetória da carga (Vasco,2011) 

O objetivo do trabalho de Vasco foi determinar a trajetória ótima a ser realizada 

pela carga, de forma que o seu deslocamento fosse feito em tempo mínimo e com a 

menor oscilação possível. 

 

Figura 10 – Modelo físico proposto por Vasco 

  



 

1.3. Motivação 

Muitos esforços foram feitos no desenvolvimento de controladores para a 

operação de pontes rolantes, guindastes e transportadores de carga no geral. Dentre os 

principais objetivos dos controladores, destaca-se a tentativa de reduzir as vibrações 

tanto da estrutura, quanto as oscilações realizadas pela carga na sua movimentação.  

Apesar dos avanços conquistados, os controladores desenvolvidos até então 

não garantem que tal objetivo seja atingido de forma satisfatória, ou que a operação 

seja fisicamente realizável. Assim, considera-se o trabalho de desenvolvimento de 

controladores para movimentação de carga, necessário e sem solução bem definida. 

Fatos motivacionais para o desenvolvimento do presente trabalho são: 

 As vibrações da estrutura fazem com que o posicionamento da carga seja 

dificultado e as tarefas de movimentação se tornem mais lentas, o que 

implica diretamente no custo de execução das obras ou outras aplicações; 

 A movimentação de grandes cargas em pontes rolantes coloca em risco os 

operadores e as pessoas que frequentam ambientes nos quais as operações 

são feitas. 

 

1.4. Objetivos 

O objetivo do trabalho é modelar e realizar o controle de uma ponte rolante 

considerando a elasticidade do cabo, minimizando o esforço de controle, assim como 

o tempo de execução da movimentação, e limitando a oscilação da carga. A proposta 

é desenvolver um controlador que seja capaz de movimentar a carga de forma que essa 

chegue na posição final com o cabo de sustentação na vertical no mínimo tempo 

possível e com o menor esforço de controle.  

  



 

2. FUNDAMENTOS TEÓRICOS 

2.1. Mecânica de corpo rígido 

2.1.1. Fundamentos da cinemática 

Ao analisar o movimento de um corpo rígido, observa-se que através do 

vínculo cinemático existente entre os pontos deste, basta o conhecimento da 

velocidade de um ponto arbitrário pertencente ao corpo e do vetor de rotação deste 

corpo, para que todo o campo de velocidade seja univocamente determinado. 

Sendo (𝑃𝑖 − 𝑃𝑗) o vetor de posição relativa entre dois pontos de um mesmo 

corpo rígido, é possível provar que a velocidade relativa entre os pontos é 

perpendicular à reta que os une, ou seja, ao vetor (𝑃𝑖 − 𝑃𝑗). É possível demonstrar 

também que existe uma relação unívoca entre os vetores velocidade de dois pontos do 

corpo rígido: 

𝑣𝑖 = 𝑣𝑗 + Ω^(𝑃𝑖 − 𝑃𝑗) (2.1) 

Sendo que Ω é o vetor de rotação do corpo. Derivando a equação anterior em 

relação ao tempo tem-se o campo de acelerações: 

𝑎𝑖 = 𝑎𝑗 + Ω̇^(𝑃𝑖 − 𝑃𝑗) + Ω^[Ω^(𝑃𝑖 − 𝑃𝑗)]  (2.2) 

2.1.2. Teorema do movimento do baricentro 

Aplicando a segunda lei de Newton a um elemento infinitesimal de massa 𝑑𝑚, 

supondo a massa do corpo invariante no tempo, tem-se: 

𝑑𝑓 = 𝑎 ∙ 𝑑𝑚  (2.3) 

E integrando a equação acima em todo o domínio do corpo obtém-se: 

𝑅 = ∫ 𝑎 ∙ 𝑑𝑚
𝑐𝑜𝑟𝑝𝑜

  (2.4) 

Sendo R a resultante das forças atuando sobre o corpo. A expressão acima pode 

facilmente ser levada a: 

𝑅 = 𝑚 ∙ 𝑎𝐺  (2.5) 

Com 𝑎𝐺 sendo a aceleração do baricentro do corpo. 



 

2.1.3. Energia cinética de um corpo rígido 

Partindo de um corpo rígido e dois sistemas de coordenadas, sendo um deles 

solidário ao corpo, e o outro do qual é medido o movimento do corpo, tem-se que a 

energia cinética de um elemento diferencial de massa é por definição: 

𝑑𝑇 =
1

2
∙ 𝑣2𝑑𝑚  (2.6) 

Integrando em todo o domínio do corpo, obtém-se a energia cinética total para 

o corpo: 

𝑇 =  
1

2
∫ 𝑣2 ∙ 𝑑𝑚
𝑐𝑜𝑟𝑝𝑜

   (2.7) 

Sendo: 𝑟′ = (𝑃 − 𝑂′) o vetor de posição relativa entre o elemento de massa 

𝑑𝑚 e o ponto 𝑂′, pertencente ao corpo, fica que: 

𝑣 = 𝑣𝑂′ + Ω^𝑟
′  (2.8) 

O que levado à expressão da energia cinética fornece: 

𝑇 =  
1

2
∙ 𝑚 ∙ 𝑣𝑂′

2 +  𝑚 ∙ 𝑣𝑂′ ∙ Ω ^(𝐺 − 𝑂
′)  +  

1

2
∙ {Ω}𝑡[𝐽𝑂′]{Ω}  (2.9) 

Se for escolhido 𝑂′ de forma que 𝑂′ ≡ 𝐺 então pode-se simplificar para: 

𝑇 =  
1

2
∙ 𝑚 ∙ 𝑣𝐺

2 + 
1

2
∙ {Ω}𝑡[𝐽𝐺]{Ω}  (2.10) 

Sendo 𝐽𝐺  a matriz de inércia do corpo em relação ao seu baricentro. 

2.2. Mecânica analítica 

A abordagem da mecânica analítica considera o sistema mecânico como um 

todo, formulando o problema a partir de duas grandezas escalares: a energia cinética e 

a energia potencial. As restrições cinemáticas do movimento são contempladas sem a 

necessidade do cálculo das forças existentes no sistema. Além disso, a introdução de 

coordenadas generalizadas torna o problema extremamente versátil. 

2.2.1. Coordenadas generalizadas 

Existe um número infinito de conjuntos de coordenadas que podem ser 

utilizadas para representar a configuração de um sistema. Alguns conjuntos podem até 



 

mesmo não ter um significado geométrico aparente, mas representam a posição do 

sistema em determinado instante e podem, portanto, ser consideradas como 

coordenadas num sentido mais amplo. Desta forma, podemos chamar qualquer 

conjunto com essas propriedades de coordenadas generalizadas de um sistema. 

Associado a cada conjunto de coordenadas generalizadas, pode existir um 

conjunto de equações de vínculo cinemático. Porém, se as coordenadas forem 

independentes, então o número de equações que descrevem o sistema é igual ao 

número de graus de liberdade, e neste caso não há equações de vínculo. 

2.2.2. Equações de Lagrange 

As equações de Lagrange podem ser obtidas à partir das Leis de Newton, 

usando o conceito de trabalho virtual e expressando os resultados por meio de 

coordenadas generalizadas e forças generalizadas. Na descrição de um sistema com n 

graus de liberdade resultam n equações diferenciais de segunda ordem. Apenas 

velocidades e deslocamentos aparecem na função Lagrangeana (ou seja, funções das 

coordenadas generalizadas e suas primeiras derivadas). Nenhuma aceleração é 

necessária e, portanto, a necessidade de cálculos cinemáticos complexos é 

frequentemente evitada. Uma vez que a função Lagrangeana é determinada, o 

procedimento para obter as equações do movimento é muito direto. É um fato a ser 

lembrado, que o enfoque Lagrangeano permite que se obtenham as equações do 

movimento para uma larga classe de problemas, a partir de uma única função escalar.  

A abordagem por energias em lugar de forças e acelerações permite que se lide com 

grandezas escalares.  

De acordo com Lagrange, sendo 𝑇 a energia cinética total do sistema e 𝑉 a 

energia potencial total, então a Lagrangeana pode ser obtida de: 

𝐿 = 𝑇 − 𝑉  (2.11) 

A partir daí as equações diferenciais do sistema são obtidas da expressão a 

seguir: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑥𝑖̇
) − 

𝜕𝐿

𝜕𝑥𝑖
= 𝑄𝑖 ;      (𝑖 = 1,2,3…𝑛)  (2.12) 

 



 

Sendo 𝑥𝑖 as coordenadas generalizadas e 𝑄𝑖 as forças generalizadas presentes 

para cada coordenada generalizada. 

2.2.3. Função de dissipação de Rayleigh 

As forças generalizadas que aparecem na equação anterior incluem as forças 

não conservativas, que não podem ser derivadas a partir de um potencial. Dentre essas 

forças existe uma classe que deve receber uma atenção especial que engloba as forças 

que são proporcionais à velocidade da partícula e resistem ao movimento, isto é, agem 

na mesma direção da velocidade, mas em sentido oposto, e têm a forma: 

𝐹𝑖 = −𝑐𝑖 ∙ 𝑥̇𝑖  (2.13) 

Funções deste tipo são dissipativas, pois sua potência é negativa e, energia é 

retirada do sistema. Definindo a função de dissipação de Rayleigh como: 

𝑅 = ∑
1

2

𝑛
𝑖=1 ∙ 𝑐𝑖 ∙ 𝑥̇𝑖

2  (2.14) 

A força generalizada associada a R pode ser expressa por: 

𝑄𝑖 = −
𝜕𝑅

𝜕𝑥𝑖̇
  (2.15) 

Introduzindo a função de dissipação na expressão de Lagrange para a 

determinação das equações diferenciais do sistema fica: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑥𝑖̇
) − 

𝜕𝐿

𝜕𝑥𝑖
+ 

𝜕𝑅

𝜕𝑥𝑖̇
= 𝑄𝑖 ;      (𝑖 = 1,2,3…𝑛)  (2.16) 

2.3. Controle ótimo 

A metodologia do controle ótimo é utilizada para se minimizar ou maximizar 

uma função objetivo de um sistema ou processo, respeitando uma série de restrições. 

Como resultado será obtida uma lei de controle que atenda aos objetivos. 

A formulação de um problema de controle ótimo exige: a descrição matemática 

do modelo ou processo, determinação das restrições físicas ou de recursos do sistema 

ou processo e especificação do critério de desempenho. 

2.3.1. Descrição matemática 



 

A descrição matemática pode ocorrer de duas formas: no domínio das 

frequências, na forma de funções de transferência; no domínio do tempo, na forma de 

variáveis de estado. No caso será aprofundada a representação no domínio do tempo.  

Como dito em [14], o estado de um sistema dinâmico é um conjunto de valores 

físicos (posição, velocidade, aceleração, temperatura, etc.), normalmente 

representados de forma vetorial, que determinam completamente a evolução do 

sistema ao longo do tempo na ausência de excitação externa. 

Dado que o comportamento de um sistema dinâmico é descrito por um 

conjunto de equações diferenciais, o modelo matemático do sistema é constituído por 

esse conjunto de equações, além de um conjunto de condições iniciais e de contorno.  

Na abordagem por espaço de estados, todas as equações são reduzidas à forma 

de equações diferenciais de primeira ordem. As variáveis dinâmicas que aparecem 

nessas equações são chamadas de variáveis de estado. Cada variável de estado deve 

ter sua condição inicial determinada. 

Como exemplo, a descrição em espaço de estados para o sistema abaixo será 

determinada. 

 

Figura 11 – Sistema massa-mola-amortecedor 

Aplicando os métodos descritos nas seções anteriores, é possível deduzir que a 

equação diferencial que representa o sistema físico é: 

𝑀 ∙ 𝑥̈ + 𝐵 ∙ 𝑥̇ + 𝐾 ∙ 𝑥 = 𝑓(𝑡)  (2.17) 



 

Define-se:  

𝑥 =  𝑞1  (2.18) 

𝑥̇ =  𝑞2  (2.19) 

De forma que: 𝑞1̇ = 𝑞2 

O sistema fica: 

𝑞1̇ = 𝑞2  (2.20) 

𝑞2̇ = − 
𝐵

𝑀
∙ 𝑞2 −

𝐾

𝑀
∙ 𝑞1 +

𝑓(𝑡)

𝑀
  (2.21) 

Que descrito na forma matricial: 

[
𝑞1̇
𝑞2̇
] =  [

0 1

−
𝐾

𝑀
− 

𝐵

𝑀

] ∙ [
𝑞1
𝑞2
] + [

0
𝑓(𝑡)

𝑀

]  (2.22) 

Se a força f(t) for entendida como uma entrada de controle que serve para 

posicionar a massa do sistema, representada por u(t): 

[
𝑞1̇
𝑞2̇
] =  [

0 1

−
𝐾

𝑀
− 

𝐵

𝑀

] ∙ [
𝑞1
𝑞2
] + [

0
1/𝑀] ∙ 𝑢  (2.23) 

Na forma geral de uma representação em espaço de estados: 

𝑥̇(𝑡) = 𝐴 ∙ 𝑥(𝑡) + 𝐵 ∙ 𝑢(𝑡)  (2.24) 

Sendo que: 

𝑥̇(𝑡) = 𝑉𝑒𝑡𝑜𝑟 𝑑𝑎𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑑𝑎𝑠 𝑝𝑟𝑖𝑚𝑒𝑖𝑟𝑎𝑠 𝑑𝑜𝑠 𝑒𝑠𝑡𝑎𝑑𝑜𝑠 

𝐴 = 𝑀𝑎𝑡𝑟𝑖𝑧 𝑑𝑖𝑛â𝑚𝑖𝑐𝑎 𝑑𝑜 𝑠𝑖𝑠𝑡𝑒𝑚𝑎 

𝑥(𝑡) = 𝑉𝑒𝑡𝑜𝑟 𝑑𝑒 𝑒𝑠𝑡𝑎𝑑𝑜𝑠 

𝐵 = 𝑀𝑎𝑡𝑟𝑖𝑧 𝑑𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑒 

𝑢(𝑡) = 𝑉𝑒𝑡𝑜𝑟 𝑑𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑒 

As matrizes A e B são matrizes de constantes, neste caso os sistemas são ditos 

invariantes no tempo. Além disso é necessário definir condições iniciais de q1 e q2 para 

que a dinâmica do sistema esteja completamente descrita. 



 

Falta ainda uma descrição para a informação sobre os estados do sistema ao 

longo do tempo. As medidas são agrupadas em um vetor de saída y(t) que contém todas 

as observações realizadas em função do tempo t. Deve-se construir um modelo de 

observações relacionando saídas e variáveis de estado. No caso linear fica: 

𝑦(𝑡) = 𝐶 ∙ 𝑥(𝑡) + 𝐷 ∙ 𝑢(𝑡)  (2.25) 

Sendo que: 

𝑦(𝑡) = 𝑉𝑒𝑡𝑜𝑟 𝑑𝑎𝑠 𝑠𝑎í𝑑𝑎𝑠 

𝐶 = 𝑀𝑎𝑡𝑟𝑖𝑧 𝑑𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎çã𝑜 𝑑𝑒 𝑒𝑠𝑡𝑎𝑑𝑜𝑠 

𝑥(𝑡) = 𝑉𝑒𝑡𝑜𝑟 𝑑𝑒 𝑒𝑠𝑡𝑎𝑑𝑜𝑠 

𝐷 = 𝑀𝑎𝑡𝑟𝑖𝑧 𝑑𝑒 𝑒𝑛𝑡𝑟𝑎𝑑𝑎𝑠 𝑑𝑖𝑟𝑒𝑡𝑎𝑠 

𝑢(𝑡) = 𝑉𝑒𝑡𝑜𝑟 𝑑𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑒 

Com isso a representação completa no espaço de estados: 

𝑥̇(𝑡) = 𝐴 ∙ 𝑥(𝑡) + 𝐵 ∙ 𝑢(𝑡)  (2.26) 

𝑦(𝑡) = 𝐶 ∙ 𝑥(𝑡) + 𝐷 ∙ 𝑢(𝑡)  (2.27) 

Que para o sistema massa-mola-amortecedor fica: 

[
𝑞1̇
𝑞2̇
] =  [

0 1

−
𝐾

𝑀
− 

𝐵

𝑀

] ∙ [
𝑞1
𝑞2
] + [

0
1/𝑀] ∙ 𝑢  (2.28) 

𝑦 = [1 0] [
𝑞1
𝑞2
] + [0 0 0]𝑢  (2.29) 

Além das condições iniciais.  

Deve-se ainda considerar duas definições. Para o sistema descrito pela equação 

𝑥̇(𝑡) = 𝐴 ∙ 𝑥(𝑡) + 𝐵 ∙ 𝑢(𝑡)  com 𝑡0 ≤  𝑡 ≤  𝑡𝑓 = 𝑡 ∈ [𝑡0, 𝑡𝑓] 

a) O histórico dos valores de entrada (u) durante o intervalo [𝑡0, 𝑡𝑓] recebe o 

nome de história de controle, ou simplesmente controle; 

b) O histórico dos valores de estado (x) durante o intervalo [𝑡0, 𝑡𝑓] recebe o 

nome de trajetória de estado. Vale ressaltar que a trajetória de controle deve ser 

admissível, ou seja, deve respeitar as restrições físicas descritas no próximo tópico. 



 

2.3.2. Restrições físicas 

Como restrições físicas pode-se entender limitações do sistema ou do processo, 

por exemplo: máxima aceleração, máxima velocidade, máxima potência do motor, 

comprimento máximo ou mínimo, máximo orçamento, máximo ou mínimo número de 

máquinas ou trabalhador, etc. No exemplo do sistema massa-mola-amortecedor, pode-

se impor como restrição física a máxima força aplicada à massa como sendo de 20N: 

𝑢(𝑡) ≤ 20  (2.30) 

2.3.3. Critérios de desempenho 

Controle ótimo é aquele no qual se minimiza (ou maximiza) uma medida de 

desempenho. A formulação do problema pode indicar diretamente a escolha de uma 

medida de desempenho, porém em outros problemas a escolha é uma questão 

subjetiva. Por exemplo, para um problema no qual deseja-se mover uma carga entre 

dois pontos, no mínimo tempo possível, a medida de desempenho aparece 

naturalmente. Por outro lado, se a condição imposta for posição e velocidade do 

sistema próximos a zero, com o menor esforço de controle, a medida de desempenho 

não é imediata. 

2.3.4. O problema de controle ótimo 

O problema de controle ótimo consiste em determinar uma lei de controle u* 

admissível que faça com que o sistema 𝑥̇(𝑡) = 𝐴 ∙ 𝑥(𝑡) + 𝐵 ∙ 𝑢(𝑡) acompanhe uma 

trajetória admissível x* e que minimize ou maximize o índice de desempenho J 

determinado: 

𝐽 = ℎ(𝑥(𝑡𝑓), 𝑡𝑓) + ∫ 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓
𝑡0

  (2.31) 

Sendo que u* é chamado de controle ótimo e x* é a trajetória ótima. Conforme 

será visto à frente, nem sempre o controle ótimo existe. Pode ser impossível encontrar 

um controle ótimo admissível que garanta uma trajetória admissível. Em outros casos 

ainda, o controle ótimo pode não ser único, de forma que há mais de uma lei de controle 

que resolve o problema de forma ótima. Quando pode-se afirmar que u* faz com que 

a medida de desempenho seja minimizada, diz-se que: 



 

𝐽 ∗ ≜ ℎ(𝑥 ∗ (𝑡𝑓), 𝑡𝑓) + ∫ 𝑔(𝑥 ∗ (𝑡), 𝑢 ∗ (𝑡), 𝑡)𝑑𝑡 ≤  ℎ(𝑥(𝑡𝑓), 𝑡𝑓) + ∫ 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓
𝑡0

𝑡𝑓
𝑡0

 

 (2.32) 

Para ∀ 𝑢 ∈ 𝑈 ; ∀ 𝑥 ∈ 𝑋. A desigualdade indica que este é o menor valor para 

o indicador de desempenho dentro da região admissível.  

Se o objetivo for a maximização de alguma medida de desempenho do sistema, 

estas mesmas teorias se aplicam, minimizando os negativos desta medida. Nas seções 

seguintes serão vistos métodos para a resolução do problema de controle ótimo. 

2.4. Programação linear 

A programação linear (PL) é uma ferramenta para resolver problemas de 

otimização. Em 1947 George Dantzig desenvolveu um método eficiente para resolver 

problemas formulados em programação linear, o chamado algoritmo simplex. Desde 

então problemas de diversas áreas como bancos, educação, petróleo, entre outros, vem 

sendo desenvolvidos e resolvidos na forma de PL. 

2.4.1. O problema de PL 

Para ilustrar um problema de PL e ao mesmo tempo defini-lo, usar-se-á o 

exemplo demonstrado em [10]. 

A empresa Giapetto’s Woodcarving, Inc. fabrica dois tipos de brinquedos de 

madeira: soldados e trens. Sendo que tem-se os seguintes dados a respeito de seu preço 

de venda e custos relacionados à fabricação: 

 

Tabela 1 – Variáveis do problema de Giapetto 

Além disso, Giapetto consegue comprar toda a matéria prima, mas tem apenas 

100 horas para empregar em acabamentos, e 80 horas para carpintaria. A demanda por 

trens é ilimitada, mas ele consegue vender no máximo 40 soldados por semana. O 

Soldados Trens

Preço de Venda (R$) 27 21

Custo de materiais (R$) 10 9

Custo de mão de obra (R$) 14 10

Carpintaria (Horas) 1 1

Acabamento (Horas) 2 1



 

Giapetto quer maximizar seu lucro semanal, e para isso precisa decidir quantos 

soldados e quantos trens fabricar por semana.  

Para formular este problema de PL, definem-se alguns conceitos: 

 Variáveis de decisão: As variáveis de decisão devem descrever 

completamente as decisões a serem tomadas, no caso do Giapetto, ele 

precisa definir o número de soldados e o número de trens, e assim suas 

variáveis de decisão são: 

x1 = Número de soldados a produzir por semana 

x2 = Número de trens a produzir por semana 

 Função objetivo: Sempre, num problema de PL, deseja-se maximizar 

ou minimizar algo. Este algo deve ser função linear das variáveis de 

decisão. Esta função linear, a ser maximizada ou minimizada, é 

chamada de função objetivo. No caso de Giapetto: 

𝐿𝑢𝑐𝑟𝑜 𝑠𝑒𝑚𝑎𝑛𝑎𝑙 = 𝑅𝑒𝑐𝑒𝑖𝑡𝑎 𝑠𝑒𝑚𝑎𝑛𝑎𝑙 − 𝐶𝑢𝑠𝑡𝑜 𝑠𝑒𝑚𝑎𝑛𝑎𝑙  (2.33) 

Com as receitas sendo: 

𝑅𝑒𝑐𝑒𝑖𝑡𝑎 𝑠𝑒𝑚𝑎𝑛𝑎𝑙 = 27 ∙ 𝑥1 +  27 ∙ 𝑥2  (2.34) 

E os custos:  

𝐶𝑢𝑠𝑡𝑜 𝑠𝑒𝑚𝑎𝑛𝑎𝑙 = (10 + 14) ∙ 𝑥1 + (9 + 10) ∙ 𝑥2   (2.35) 

De forma que o lucro semanal, que é a função objetivo a ser 

maximizada é a seguinte: 

𝐿𝑢𝑐𝑟𝑜 𝑠𝑒𝑚𝑎𝑛𝑎𝑙 = 3 ∙ 𝑥1 +  2 ∙ 𝑥2  (2.36) 

Chamando a função objetivo de z tem-se que: 

max(𝑧) = 3 ∙ 𝑥1 +  2 ∙ 𝑥2  (2.37) 

 Restrições: Conforme Giapetto aumenta sua produção, as variáveis de 

decisão aumentam e portanto o lucro aumenta. Porém, Giapetto tem 

algumas restrições, por exemplo:  a cada semana ele tem 100 horas para 



 

fazer acabamentos; a cada semana ele tem 80 horas para fazer 

carpintaria; a cada semana ele vende no máximo 40 soldados. Todas 

essas variáveis devem ser mostradas matematicamente na PL, como 

segue: 

Horas de acabamento:  2 ∙ 𝑥1 +  1 ∙ 𝑥2 ≤ 100  (2.38) 

Horas de carpintaria:  1 ∙ 𝑥1 +  1 ∙ 𝑥2 ≤ 80   (2.39) 

Número de soldados:  𝑥1 ≤ 40   (2.40) 

Os coeficientes para as variáveis de decisão nas restrições são 

chamados também de coeficientes tecnológicos, isso porque em muitos 

casos estão relacionados à tecnologia utilizada no processo. O valor 

encontrado ao lado direito da sentença é chamado de right-hand side 

(ou rhs) e comumente está relacionado com disponibilidade de recursos. 

 Restrições de sinais: Para completar a formulação do problema de 

programação linear, deve-se especificar se há restrições de sinal, e neste 

caso pode-se determinar que as variáveis de decisão devem ser não 

negativas, ou se são irrestritas (podem ser positivas, nulas ou 

negativas). No caso de Giapetto: 

𝑥1, 𝑥2 ≥ 0  (2.41) 

2.4.2. Representação do problema de PL 

Combinando todos os resultados obtidos até então, encontra-se a formulação 

completa do problema de PL: 

max(𝑧) = 3 ∙ 𝑥1 +  2 ∙ 𝑥2 (Função objetivo) (2.42) 

Sujeito a: 

2 ∙ 𝑥1 +  1 ∙ 𝑥2 ≤ 100  (Restrição de acabamento)   (2.43) 

1 ∙ 𝑥1 +  1 ∙ 𝑥2 ≤ 80  (Restrição de carpintaria)  (2.44) 

𝑥1 ≤ 40  (Restrição de demanda por soldados) (2.45) 

𝑥1, 𝑥2 ≥ 0   (Restrições de sinal)   (2.46) 



 

Diz-se sujeito a, pois os valores das variáveis de decisão devem respeitar todas 

as restrições. 

2.4.3. Solução do problema de PL 

2.4.3.1. Região viável 

Um dos conceitos básicos associados à programação linear é o de região viável. 

Para a definição desse conceito, o termo “ponto” será usado com o significado de 

conjunto formado pelos valores de cada variável de decisão. Portanto, a região viável 

é o conjunto de todos os pontos que satisfazem todas as restrições da PL, incluindo as 

restrições de sinais. Em outras palavras, são todas as combinações de valores para as 

variáveis de decisão que respeitam as condições impostas pelas equações que definem 

o problema de PL. 

Para um problema de duas variáveis, considerando a restrição de sinal para 

ambas as variáveis, fica, por exemplo: 

 

Figura 12 – Região viável com restrições de não negatividade 

Colocando-se uma condição de que a variável x1 deve ser menor ou igual a A: 

 

Figura 13 – Região viável com restrição para x1 



 

 

Aplicando uma restrição para a variável x2 em relação a x1: 

 

Figura 14 – Região viável com restrição para x2 em relação a x1 

 

Colocando outra restrição para x2 em relação a x1: 

 

Figura 15 – Região viável com restrição para x2 em relação a x1 

Portanto, a solução ótima, deve ser encontrada no interior da região viável 

(destacada em cinza na figura acima). Qualquer solução encontrada fora desta região 

desrespeitará uma ou mais das restrições do problema. 

2.4.3.2. Solução gráfica para duas variáveis 

Qualquer problema de PL com duas variáveis pode ser resolvido de forma 

gráfica. Nestes casos nomeia-se o eixo horizontal de x1 e o eixo vertical de x2, que são 

as variáveis de decisão. Encontra-se na sequência a região viável, dadas as restrições 

impostas à PL. No problema de Giapetto por exemplo, a região viável, mostrada na 

forma gráfica fica: 



 

 

Figura 16 – Região viável para o problema do Giapetto  

Após identificada a região viável, parte-se para a determinação do ponto ótimo, 

que representa a solução ótima do problema. No caso, como deve-se maximizar o valor 

do lucro semanal, representado pela função z, deve-se encontrar o ponto na região 

viável para a qual a função 𝑧 = 3 ∙ 𝑥1 +  2 ∙ 𝑥2 tenha seu valor máximo.  

Para tal, deve-se representar as retas para as quais a função z possua o mesmo 

valor. Por exemplo, escolhendo o ponto (20,0), para o qual z = 60 achamos a reta 

representada por: 

𝑥2 = 30 − 
3

2
𝑥1 (2.47) 

E sabe-se que todos os pontos que pertencem a essa reta possuem o valor da 

função objetivo igual a 60. Ou seja, para qualquer combinação das variáveis x1 e x2, 

que estejam sobre a reta mencionada, o lucro semanal será de R$60,00. Como todas as 

retas que representam as soluções para o problema são do formato: 

3 ∙ 𝑥1 +  2 ∙ 𝑥2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒  (2.48) 

Fica claro que todas possuem a mesma inclinação, bastando portanto deslocar-

se perpendicularmente na direção que aumenta o valor da função objetivo (construindo 

retas paralelas à primeira), até que se tangencie a região viável. O ponto de tangência 

entre a reta e a região viável será o ponto da solução ótima.  

No caso de Giapetto, o ponto ótimo é o ponto representado por G, onde: 



 

𝑥1 = 20 ; 𝑥2 = 60 ;  𝑧 = 𝑅$180,00   (2.49) 

2.4.3.3. Solução ótima 

Um problema de PL pode ter apenas uma solução ótima, como mostrado 

anteriormente, pode ter múltiplas soluções ótimas, ou até mesmo ser insolúvel, caso 

no qual não há solução para as restrições impostas. Graficamente, fica simples de 

entender, como na solução para a seguinte formulação: 

max(𝑧) = 3 ∙ 𝑥1 +  2 ∙ 𝑥2  (2.50) 

Sujeito a: 

1

40
∙ 𝑥1 + 

1

60
∙ 𝑥2 ≤ 1   (2.51) 

1

50
∙ 𝑥1 + 

1

50
∙ 𝑥2 ≤ 1   (2.52) 

𝑥1, 𝑥2 ≥ 0    (2.53) 

A região viável fica determinada por: 

 

Figura 17 – Região viável com múltiplas soluções  

Nota-se que neste caso, a reta que tangencia a região viável é coincidente com 

o segmento AE, de forma que qualquer combinação entre as variáveis de decisão, que 

estejam sobre essa reta serão soluções ótimas. 

No caso do problema formulado por: 



 

max(𝑧) = 3 ∙ 𝑥1 +  2 ∙ 𝑥2  (2.54) 

Sujeito a: 

1

40
∙ 𝑥1 + 

1

60
∙ 𝑥2 ≤ 1   (2.55) 

1

50
∙ 𝑥1 + 

1

50
∙ 𝑥2 ≤ 1   (2.56) 

𝑥1 ≥ 30    (2.57) 

𝑥2 ≥ 20    (2.58) 

𝑥1, 𝑥2 ≥ 0    (2.59) 

A região viável, que respeite todas as restrições é inexistente, de forma que não 

há solução ótima e o problema é insolúvel: 

 

Figura 18 – Região viável inexistente (Problema insolúvel)  

2.4.3.4. Minimizando a soma do módulo na função objetivo 

Em alguns casos é necessário minimizar a soma de valores absolutos de 

determinadas variáveis na função objetivo, neste caso, a metodologia a seguir, 

encontrada em [13] e também utilizada por [5], pode ser utilizada: 

Encontrar 𝑦𝑖 𝑐𝑜𝑚 𝑖 = 1, …𝑚 que minimize:  

∑ |∑ 𝑦𝑖
𝑚
𝑖−1 𝑏𝑖𝑗 − 𝑏𝑗|

𝑝
𝑗=1   (2.60) 



 

Sujeito a: 

∑ 𝑦𝑖
𝑚
𝑖−1 𝑎𝑖𝑗 ≥ 𝑐𝑗        𝑝𝑎𝑟𝑎 𝑗 = 1,… , 𝑙   (2.61) 

∑ 𝑦𝑖
𝑚
𝑖−1 𝑎𝑖𝑗 ≥ 𝑐𝑗        𝑝𝑎𝑟𝑎 𝑗 = 𝑙 + 1,… , 𝑛  (2.62) 

𝑦𝑖 ≥  0        𝑝𝑎𝑟𝑎 𝑖 = 1, … , 𝑘    (2.63) 

𝑦𝑖  𝑖𝑟𝑟𝑒𝑠𝑡𝑟𝑖𝑡𝑜        𝑝𝑎𝑟𝑎 𝑖 = 1,… , 𝑘   (2.64) 

Para que o problema fique no formato de uma PL, deve-se adicionar mais p 

variáveis fictícias 𝑦𝑚+1, … , 𝑦𝑚+𝑝 e deve-se trocar a função objetivo para: 

min(𝑧) =  ∑ 𝑦𝑚+𝑗
𝑝
𝑗=1   (2.65) 

Sujeito às restrições: 

∑ 𝑦𝑖
𝑚
𝑖−1 𝑏𝑖𝑗 − 𝑏𝑗 ≤ 𝑦𝑚+𝑗        𝑝𝑎𝑟𝑎 𝑗 = 1,… , 𝑝   (2.66) 

−∑ 𝑦𝑖
𝑚
𝑖−1 𝑏𝑖𝑗 − 𝑏𝑗 ≤ 𝑦𝑚+𝑗           𝑝𝑎𝑟𝑎 𝑗 = 1, … , 𝑝  (2.67) 

Neste caso, as variáveis fictícias 𝑦𝑚+1, … , 𝑦𝑚+𝑝 serão sempre não negativas, 

mesmo que isto não esteja explícito nas restrições. 

2.5. Programação linear aplicada a controle ótimo 

Como em [5], será mostrado como um problema de controle ótimo, para um 

sistema dinâmico linear e de tempo discreto pode ser colocado na forma padrão de um 

problema de programação linear, partindo-se da representação em espaço de estados. 

Considerando um sistema dinâmico de tempo discreto, representado em espaço 

de estados, tem-se que: 

𝑥(𝑘+1) = 𝐴 ∙ 𝑥(𝑘) + 𝐵 ∙ 𝑢(𝑘)  (2.68) 

Sendo que: 

𝑥(𝑘+1) = Valor do vetor de estados no próximo instante kT 

𝑥(𝑘) = Valor do vetor de estados no instante kT 

𝑢(𝑘) = Valor do vetor de controle no instante kT 



 

𝐴 = Matriz do sistema 

𝐵 = Matriz de entradas 

Para cada instante kT, sendo k = 0, 1, 2, 3... Tem-se portanto: 

𝑥(1) = 𝐴𝑥(0) + 𝐵𝑢(0) 

𝑥(2) = 𝐴𝑥(1) + 𝐵𝑢(1) =  𝐴(𝐴𝑥(0) + 𝐵𝑢(0))  + 𝐵𝑢(1)  

=  𝐴2𝑥(0) + 𝐴
1𝐵𝑢(0) + 𝐴

0𝐵𝑢(1) 

𝑥(3) = 𝐴𝑥(2) + 𝐵𝑢(2) = ⋯ 

⋮ 

De forma que para um instante nT qualquer, pode-se escrever: 

𝑥(𝑛) =  𝐴
𝑛𝑥(0) + 𝐴

(𝑛−1)𝐵𝑢(0) + 𝐴
(𝑛−2)𝐵𝑢(1)  + 𝐴

(𝑛−3)𝐵𝑢(2) +⋯+ 𝐴
1𝐵𝑢(𝑛−2) + 𝐴

0𝐵𝑢(𝑛−1) (2.69) 

Que pode ser escrito como: 

𝑥(𝑛) = 𝐴
𝑛𝑥(0) + [𝐴

(𝑛−1)𝐵  𝐴(𝑛−2)𝐵  𝐴(𝑛−3)𝐵 ⋯ 𝐴1𝐵  𝐴0𝐵]

[
 
 
 
 
𝑢(0)
𝑢(1)
⋮

𝑢(𝑛−2)
𝑢(𝑛−1)]

 
 
 
 

  (2.70) 

Ou então: 

𝑥(𝑛) =  𝐹𝑥(0) + 𝐺𝑈  (2.71) 

Sendo que neste caso: 

𝐹 =  𝐴𝑛  (2.72) 

𝐺 = [𝐴(𝑛−1)𝐵  𝐴(𝑛−2)𝐵  𝐴(𝑛−3)𝐵 ⋯ 𝐴1𝐵  𝐴0𝐵]   (2.73) 

𝑈 =  

[
 
 
 
 
𝑢(0)
𝑢(1)
⋮

𝑢(𝑛−2)
𝑢(𝑛−1)]

 
 
 
 

   (2.74) 



 

É interessante notar, que a partir dessa última relação torna-se possível 

representar o modelo dinâmico na forma de um problema de programação linear, que 

inclui as condições iniciais 𝑥(0) e 𝑥(𝑛). O problema fica descrito por: 

𝐺𝑈 = 𝑥(𝑛) −  𝐹𝑥(0)   (2.75) 

E fazendo com que:  

𝐴 = 𝐺    (2.76) 

𝑋 = 𝑈    (2.77) 

𝐵 = 𝑥(𝑛) −  𝐹𝑥(0)  (2.78) 

Fica que: 

𝐴𝑋 = 𝐵   (2.79) 

E assim voltamos ao formato padrão para a PL, sendo que agora temos o vetor 

de controle no lugar das variáveis de decisão. Se houver restrições para o histórico de 

controle, que possam ser representadas por desigualdades elas podem ser também 

descritas por: 

𝐴1𝑋1 ≥ 𝐵1  (2.80) 

Desta forma, a dinâmica do sistema foi descrita por restrições lineares entre os 

estados e o vetor de controle. Falta ainda, definir qual a função objetivo a ser resolvida 

na PL. Esta função objetivo dependerá do problema de otimização que se pretende 

resolver. 

 

 

  



 

3. METODOLOGIA 

A metodologia segue as etapas ordenadas a seguir: 

 Determinação de um modelo físico que seja representativo do 

problema, mas ao mesmo tempo simples o suficiente para que possa ser 

equacionado e resolvido; 

 Obtenção de um modelo matemático que descreva o comportamento do 

modelo físico. Nesta etapa, espera-se obter um conjunto de equações 

diferenciais, caso seja necessário essas devem ser linearizadas para 

permitir a posterior resolução; 

 Colocação do modelo matemático no formato de espaço de estados para 

a simulação do comportamento do sistema e posterior aplicação das 

técnicas de controle ótimo; 

 Obtenção das leis de controle e análise dos resultados; 

 Comparação de resultados com os de um modelo matemático mais 

simples para o mesmo modelo físico. 

Deve-se concluir, ao final, se o modelo mais complexo traz vantagens em 

relação ao modelo mais simples, ou se as simplificações pouco alteram os resultados 

finais. 

 

 

 

 

  



 

4. ESTUDO DE CASO 

4.1. Modelo físico 

Para o estudo da aplicação de controle ótimo na determinação da trajetória 

imposta a uma carga movimentada por uma ponte rolante, considerando a flexibilidade 

do cabo de movimentação e de forma a minimizar as vibrações da carga, é necessário 

determinar um modelo físico que seja representativo do modelo real. 

O modelo físico adotado neste trabalho pode ser visto na figura a seguir: 

 

Figura 19 - Modelo físico para o estudo de caso [5] 

O modelo é composto de uma viga engastada em suas extremidades, 

representando o corpo da ponte rolante, considerada rígida. Preso à viga e apoiado 

sobre rodas, está o carro de movimentação, e suportado por ele a carga em balanço. O 

carro será representado por um bloco de massa concentrada. Além disto, será utilizado 

um modelo de cabo como o apresentado na fig. 19: 



 

 

Figura 20 - Modelo físico de cabo com elasticidade para o estudo de caso 

4.2. Modelo matemático 

4.2.1. Hipóteses do modelo 

Ao definir o modelo físico, algumas hipóteses serão assumidas para simplificar 

o problema, quais são: 

 O cabo de sustentação é de massa desprezível; 

 O movimento é inteiramente plano; 

 Não há forças de atrito, exceto na junção entre o cabo e o carro; 

 A viga é considerada rígida; 

 O amortecimento do cabo devido à distensão é considerado viscoso. 

4.2.2. Lagrangeana do sistema 

Para encontrar a Lagrangeana do sistema, é preciso primeiro determinar a 

energia cinética e a energia potencial de cada componente, assim como a função de 

Rayleigh do sistema.  

4.2.2.1. Energia cinética do carro 

Tomando como referencial a extremidade esquerda da viga, com o eixo x 

orientado de acordo com a figura 20, e a base como negativa, a posição do carro pode 

ser definida como: 

𝑟𝑐𝑎𝑟𝑟𝑜 = 𝑥 ∙ 𝑖  (4.1) 

Derivando em relação ao tempo: 



 

𝑟̇𝑐𝑎𝑟𝑟𝑜 = 𝑥̇ ∙ 𝑖  (4.2) 

De forma que a energia cinética fica: 

𝑇𝑐𝑎𝑟𝑟𝑜 =
𝑀∙𝑟̇2𝑐𝑎𝑟𝑟𝑜

2
= 

𝑀∙𝑥2̇

2
   (4.3) 

4.2.2.2. Energia cinética da carga 

A posição da carga pode ser descrita por: 

𝑟𝑐𝑎𝑟𝑔𝑎 = (𝑥 − 𝑙 ∙ 𝑠𝑒𝑛𝜃) ∙ 𝑖 + (𝑙 ∙ 𝑐𝑜𝑠𝜃) ∙ 𝑗  (4.4) 

Derivando em relação ao tempo: 

𝑟̇𝑐𝑎𝑟𝑔𝑎 = (𝑥̇ − 𝑙̇ ∙ 𝑠𝑒𝑛𝜃 − 𝜃̇ ∙ 𝑙 ∙ 𝑐𝑜𝑠𝜃) ∙ 𝑖 + (𝑙̇ ∙ 𝑐𝑜𝑠𝜃 − 𝑙 ∙ 𝜃̇ ∙ 𝑠𝑒𝑛𝜃) ∙ 𝑗  (4.5) 

De forma que a energia cinética fica: 

𝑇𝑐𝑎𝑟𝑔𝑎 =
𝑀𝑐∙𝑟̇

2
𝑐𝑎𝑟𝑔𝑎

2
=  

𝑀𝑐

2
 [𝑥2̇ + 𝑙2̇ + 𝑙2𝜃2̇ − 2𝑙𝜃̇𝑥̇ cos 𝜃 −  2𝑥̇𝑙𝑠̇𝑒𝑛𝜃] (4.6) 

4.2.2.3. Energia potencial gravitacional da carga 

Para a energia potencial fica (tomando a linha média da viga como referencial 

para a energia potencial gravitacional): 

𝑉𝑔 = 𝑀𝑐𝑔 ∙ 𝑙 ∙ 𝑐𝑜𝑠𝜃  (4.7) 

4.2.2.4. Energia potencial de deformação 

Para a energia potencial de deformação do cabo: 

𝑉𝑑 = 
𝑘(𝑙−𝑙0)

2

2
   (4.8) 

4.2.2.5. Função de Rayleigh das perdas no cabo 

A energia de dissipação no cabo pode ser escrita por: 

𝑅 = 
𝐵1𝑙̇

2

2
+
𝐵2𝜃̇

2

2
  (4.9) 

4.2.2.6. Lagrangeana do sistema 

A Lagrangeana, portanto: 



 

𝑳 =  
𝑴∙𝒙𝟐̇

𝟐
+

𝑴𝒄

𝟐
 [𝒙𝟐̇ + 𝒍𝟐̇ + 𝒍𝟐𝜽𝟐̇ − 𝟐𝒍𝜽̇𝒙̇ 𝐜𝐨𝐬 𝜽 −  𝟐𝒙̇𝒍̇𝒔𝒆𝒏𝜽] − 𝑴𝒄𝒈 ∙ 𝒍 ∙ 𝒄𝒐𝒔𝜽 − 

𝒌(𝒍−𝒍𝟎)
𝟐

𝟐
 

(4.10) 

4.2.3. Equações diferenciais 

4.2.3.1.  Variável x 

(
𝜕𝐿

𝜕𝑥̇
) =  (𝑀 +𝑀𝑐) 𝑥̇ −  𝑀𝑐(𝑙 𝜃̇ 𝑐𝑜𝑠𝜃 + 𝑙 ̇𝑠𝑒𝑛𝜃)  (4.11) 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑥̇
) =   (𝑀 +𝑀𝑐) 𝑥̈ +  𝑀𝑐(−𝑙𝜃̈ 𝑐𝑜𝑠𝜃 + 𝑙 𝜃̇

2 𝑠𝑒𝑛𝜃 − 𝑙 ̈𝑠𝑒𝑛𝜃 − 𝑙𝜃̇̇ 𝑐𝑜𝑠𝜃 ) (4.12) 

 

𝜕𝐿

𝜕𝑥
=  0  (4.13) 

 

𝜕𝑅

𝜕𝑥̇
= 0   (4.14) 

 

𝑄𝑥 = 𝐹𝑡  (4.15) 

 

Que resulta na equação diferencial: 

(𝑀 +𝑀𝑐) 𝑥̈ +  𝑀𝑐(−𝑙𝜃̈ 𝑐𝑜𝑠𝜃 + 𝑙 𝜃̇
2 𝑠𝑒𝑛𝜃 − 𝑙 ̈𝑠𝑒𝑛𝜃 − 𝑙𝜃̇̇ 𝑐𝑜𝑠𝜃 ) =  𝐹𝑡  

(4.16) 

 

Linearizando os termos em 𝜃, considerando pequenos deslocamentos 

angulares, tem-se que: 

𝑐𝑜𝑠𝜃 ≈ 1     ;     𝑠𝑒𝑛𝜃 ≈ 𝜃     ;      𝜃̇2 ≈ 0 

Resulta: 

(𝑴 +𝑴𝒄) 𝒙̈ −  𝑴𝒄(𝒍𝜽̈ + 𝒍̈𝜽 + 𝟐𝒍̇𝜽̇)  = 𝑭𝒕   (4.17) 

 

Que é a primeira equação diferencial do sistema. 

4.2.3.2. Variável l 

(
𝜕𝐿

𝜕𝑙̇
) =  𝑀𝑐(𝑙̇ −  𝑥̇ 𝑠𝑒𝑛𝜃)  (4.18) 



 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑙̇
) =   𝑀𝑐(𝑙̈ −  𝑥̈ 𝑠𝑒𝑛𝜃 − 𝑥̇𝜃̇ 𝑐𝑜𝑠𝜃)  (4.19) 

 

𝜕𝐿

𝜕𝑙
= 𝑀𝑐(𝑙𝜃2̇ − 𝜃̇𝑥̇𝑐𝑜𝑠𝜃 − 𝑔 𝑐𝑜𝑠𝜃) − 𝑘(𝑙 − 𝑙0)  (4.20) 

 

𝜕𝑅

𝜕𝑙̇
= 𝐵1𝑙 ̇  (4.21) 

 

𝑄𝑙 = 0  (4.22) 

 

Que resulta na equação diferencial: 

𝑀𝑐(𝑙̈ −  𝑥̈ 𝑠𝑒𝑛𝜃 −   𝑙𝜃2̇  +  𝑔 𝑐𝑜𝑠𝜃) + 𝑘(𝑙 − 𝑙0) + 𝐵1𝑙̇ =  0  (4.23) 

 

Linearizando os termos em 𝜃, considerando pequenos deslocamentos 

angulares, tem-se que: 

𝑐𝑜𝑠𝜃 ≈ 1     ;     𝑠𝑒𝑛𝜃 ≈ 𝜃     ;      𝜃̇2 ≈ 0 

Resulta: 

𝑴𝒄( 𝒍̈ −  𝒙̈𝜽 +  𝒈) + 𝒌(𝒍 − 𝒍𝟎) + 𝑩𝟏𝒍̇  = 𝟎  (4.24) 

 

Que é a segunda equação diferencial do sistema. 

4.2.3.3. Variável θ 

(
𝜕𝐿

𝜕𝜃̇
) =  𝑀𝑐(𝑙

2𝜃̇ −  𝑙𝑥̇ 𝑐𝑜𝑠𝜃)   (4.25) 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝜃̇
) =   𝑀𝑐(2𝑙𝑙𝜃̇̇ + 𝑙

2𝜃̈ −  𝑙𝑥̇̇ 𝑐𝑜𝑠𝜃 −  𝑙𝑥̈ 𝑐𝑜𝑠𝜃 + 𝑙𝑥̇𝜃̇ 𝑠𝑒𝑛𝜃)  (4.26) 

 

𝜕𝐿

𝜕𝜃
= 𝑀𝑐(𝑙𝑥̇𝜃̇ 𝑠𝑒𝑛𝜃 − 𝑥̇𝑙 ̇𝑐𝑜𝑠𝜃 +  𝑔𝑙 𝑠𝑒𝑛𝜃)   (4.27) 

 

𝜕𝑅

𝜕𝜃̇
= 𝐵2𝜃̇   (4.28) 

 



 

𝑄𝜃 = 0  (4.29) 

 

Que resulta na equação diferencial: 

𝑀𝑐(2𝑙𝑙𝜃̇̇ + 𝑙
2𝜃̈ −  𝑙𝑥̈ 𝑐𝑜𝑠𝜃 −  𝑔𝑙 𝑠𝑒𝑛𝜃) + 𝐵2𝜃̇ =  0   (4.30) 

 

Linearizando os termos em 𝜃, considerando pequenos deslocamentos 

angulares, tem-se que: 

𝑐𝑜𝑠𝜃 ≈ 1     ;     𝑠𝑒𝑛𝜃 ≈ 𝜃 

Resulta: 

𝑴𝒄(𝟐𝒍𝒍̇𝜽̇ + 𝒍
𝟐𝜽̈ −  𝒍𝒙̈  −  𝒈𝒍𝜽) + 𝑩𝟐𝜽̇ =  𝟎   (4.31) 

Que é a terceira equação diferencial do sistema. 

4.2.3.4. Sistema de equações 

O sistema de equações fica definido, portanto: 

{
 
 

 
 

(𝑴+𝑴𝒄) 𝒙̈ −  𝑴𝒄(𝒍𝜽̈ + 𝒍̈𝜽 + 𝒍̇𝜽̇) = 𝑭𝒕

𝑴𝒄( 𝒍̈ − 𝒙̈𝜽 +  𝒈) + 𝒌(𝒍 − 𝒍𝟎) + 𝑩𝟏𝒍̇  = 𝟎

𝑴𝒄(𝟐𝒍𝒍̇𝜽̇ + 𝒍
𝟐𝜽̈ −  𝒍𝒙̈  −  𝒈𝒍𝜽) + 𝑩𝟐𝜽̇ =  𝟎

  (4.32) 

4.2.3.5.  Demais simplificações 

Considerando ainda que as oscilações nas variáveis “l” e “θ” são pequenas em 

torno do ponto de equilíbrio, é possível dizer que: 

𝑙 =  𝑙𝑒𝑞 +  𝛿𝑙    (4.33) 

𝜃 =  𝜃𝑒𝑞 +  𝛿𝜃  (4.34) 

Sendo que δl e δθ pequenas perturbações em relação ao ponto de equilíbrio. A 

mesma hipótese não é válida para a variável “x”, pois ela sofrerá grandes 

deslocamentos.  

As derivadas ficam: 

𝑙̇ =  𝑙𝑒𝑞̇ +  𝛿𝑙 ̇  ;   𝑙̈ =  𝑙𝑒𝑞̈ +  𝛿𝑙 ̈  ;   𝜃̇ =  𝜃𝑒𝑞̇ +  𝛿𝜃̇   ;   𝜃̈ =  𝜃𝑒𝑞̈ +  𝛿𝜃̈  (4.35) 



 

Aplicando nos termos das equações temos que: 

 𝑙̈ ∙ 𝜃 = 0   (4.36) 

 𝑙̇ ∙ 𝜃̇ = 0  (4.37) 

 𝑙 ∙ 𝜃̈ = 𝑙𝑒𝑞 ∙ 𝛿𝜃̈ (4.38) 

A primeira equação fica portanto: 

(𝑴 +𝑴𝒄)𝒙̈ − 𝑴𝒄 ∙ 𝒍𝒆𝒒 ∙ 𝜹𝜽̈ = 𝑭𝑻   (4.39) 

  𝑙 ̈ =  𝛿𝑙 ̈   (4.40) 

 𝑥̈𝜃 = 𝑥̈ ∙ 𝛿𝜃   (4.41) 

 𝑙 − 𝑙0 = 𝑙𝑒𝑞 +  𝛿𝑙 − 𝑙0 (4.42) 

 𝑙̇ =  𝛿𝑙 ̇   (4.43) 

A segunda equação fica portanto: 

𝑴𝒄(𝜹𝒍̈ − 𝒙̈ ∙ 𝜹𝜽 + 𝒈) + 𝒌(𝒍𝒆𝒒 +  𝜹𝒍 − 𝒍𝟎) + 𝑩𝟏𝜹𝒍̇ = 𝟎   (4.44) 

 2𝑙𝑙𝜃̇̇ =  0  (4.45) 

 𝑙2𝜃̈ =  𝑙𝑒𝑞
2 ∙ 𝛿𝜃̈ (4.46) 

 𝑙𝑥̈ =  𝑥̈ ∙ 𝑙𝑒𝑞 + 𝑥̈ ∙ 𝛿𝑙 (4.47) 

 𝑔𝑙𝜃 = 𝑔 ∙ 𝑙𝑒𝑞 ∙ 𝛿𝜃 (4.48) 

 𝜃̇ =  𝛿𝜃̇  (4.49) 

A terceira equação fica portanto: 

𝑴𝒄(𝒍𝒆𝒒
𝟐 ∙ 𝜹𝜽̈ + 𝒙̈ ∙ 𝒍𝒆𝒒 + 𝒙̈ ∙ 𝜹𝒍 + 𝒈 ∙ 𝒍𝒆𝒒 ∙ 𝜹𝜽) + 𝑩𝟐 𝜹𝜽̇ = 𝟎 (4.50) 

O sistema de equações fica definido, portanto: 

 

{
 
 

 
 

(𝑴+𝑴𝒄)𝒙̈ − 𝑴𝒄 ∙ 𝒍𝒆𝒒 ∙ 𝜹𝜽̈ = 𝑭𝑻

𝑴𝒄(𝜹𝒍̈ − 𝒙̈ ∙ 𝜹𝜽 + 𝒈) + 𝒌(𝒍𝒆𝒒 +  𝜹𝒍 − 𝒍𝟎) + 𝑩𝟏𝜹𝒍̇ = 𝟎

𝑴𝒄(𝒍𝒆𝒒
𝟐 ∙ 𝜹𝜽̈ + 𝒙̈ ∙ 𝒍𝒆𝒒 + 𝒙̈ ∙ 𝜹𝒍 + 𝒈 ∙ 𝒍𝒆𝒒 ∙ 𝜹𝜽) + 𝑩𝟐 𝜹𝜽̇ = 𝟎

 (4.51) 



 

Os termos 𝒙̈ ∙ 𝜹𝜽 e 𝒙̈ ∙ 𝜹𝒍 fazem com que o sistema ainda seja não-linear. A 

solução proposta neste caso será a de desprezar os termos, dado que são multiplicações 

de derivadas e devem ser muito próximos a zero.  

4.2.3.6. Sistema completo final 

O sistema de equações final a ser resolvido fica portanto: 

{
 
 

 
 

(𝑴+𝑴𝒄)𝒙̈ − 𝑴𝒄 ∙ 𝒍𝒆𝒒 ∙ 𝜹𝜽̈ = 𝑭𝑻

𝑴𝒄(𝜹𝒍̈ + 𝒈) + 𝒌(𝒍𝒆𝒒 +  𝜹𝒍 − 𝒍𝟎) + 𝑩𝟏𝜹𝒍̇ = 𝟎

𝑴𝒄(𝒍𝒆𝒒
𝟐 ∙ 𝜹𝜽̈ + 𝒙̈ ∙ 𝒍𝒆𝒒 +𝒈 ∙ 𝒍𝒆𝒒 ∙ 𝜹𝜽) + 𝑩𝟐 𝜹𝜽̇ = 𝟎

 (4.52) 

4.3. Solução do sistema completo sem controle 

4.3.1. Espaço de estados 

Para colocar o sistema em espaço de estados usa-se o seguinte artifício: 

𝑥 = 𝑞1  ;    𝑥̇ = 𝑞2   ;     𝛿𝜃 = 𝑞3   ;     𝛿𝜃̇ = 𝑞4  ;   𝛿𝑙 = 𝑞5   ;    𝛿𝑙̇ = 𝑞6  (4.53) 

O sistema de equações deduzido é: 

{
 
 

 
 

(𝑴+𝑴𝒄) ∙ 𝒒𝟐̇ − 𝑴𝒄 ∙ 𝒍𝒆𝒒 ∙ 𝒒𝟒̇ = 𝑭𝑻

𝑴𝒄(𝒒𝟔̇ + 𝒈) + 𝒌(𝒍𝒆𝒒 + 𝒒𝟓 − 𝒍𝟎) + 𝑩𝟏 ∙ 𝒒𝟔 = 𝟎

𝑴𝒄(𝒍𝒆𝒒
𝟐 ∙ 𝒒𝟒̇ + 𝒒𝟐̇ ∙ 𝒍𝒆𝒒 + 𝒈 ∙ 𝒍𝒆𝒒 ∙ 𝒒𝟑) + 𝑩𝟐 ∙ 𝒒𝟒 = 𝟎

 (4.54) 

Na forma matricial o sistema pode ser representado portando: 

[
 
 
 
 
 
1 0 0 0 0 0
0 (M +𝑀𝐶) 0 −(𝑀𝐶 ∙ 𝑙𝑒𝑞) 0 0

0 0 1 0 0 0
0 0 0 0 0 𝑀𝐶

0 0 0 0 1 0
0 𝑙𝑒𝑞 0 𝑙𝑒𝑞

2 0 0 ]
 
 
 
 
 

[
 
 
 
 
 
𝑞1̇
𝑞2̇
𝑞3̇
𝑞4̇
𝑞5̇
𝑞6̇]
 
 
 
 
 

=  

[
 
 
 
 
 
 
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −k −𝐵1
0 0 0 0 0 1

0 0 −(g ∙ 𝑙𝑒𝑞) − (
𝐵2

𝑀𝐶
) 0 0 ]

 
 
 
 
 
 

∙

[
 
 
 
 
 
𝑞1
𝑞2
𝑞3
𝑞4
𝑞5
𝑞6]
 
 
 
 
 

+

[
 
 
 
 
 

0
𝐹𝑇
0

−[𝑀𝑐 ∙ 𝑔 + 𝑘 ∙ (𝑙𝑒𝑞 − 𝑙0)]

0
0 ]

 
 
 
 
 

𝑢  (4.55) 

 

Neste sistema as variáveis não estão desacopladas, para fazer isto sejam: 



 

 

J =

[
 
 
 
 
 
1 0 0 0 0 0
0 (M +𝑀𝐶) 0 −(𝑀𝐶 ∙ 𝑙𝑒𝑞) 0 0

0 0 1 0 0 0
0 0 0 0 0 𝑀𝐶

0 0 0 0 1 0
0 𝑙𝑒𝑞 0 𝑙𝑒𝑞

2 0 0 ]
 
 
 
 
 

  (4.56) 

 

K =

[
 
 
 
 
 
 
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −k −𝐵1
0 0 0 0 0 1

0 0 −(g ∙ 𝑙𝑒𝑞) − (
𝐵2

𝑀𝐶
) 0 0 ]

 
 
 
 
 
 

  (4.57) 

 

M =

[
 
 
 
 
 

0
𝐹𝑇
0

−[𝑀𝑐 ∙ 𝑔 + 𝑘 ∙ (𝑙𝑒𝑞 − 𝑙0)]

0
0 ]

 
 
 
 
 

  (4.58) 

 

Fazemos então: 

[𝑁] = [𝐽]−1  (4.59) 

 

Então: 

[𝐴] =  [𝑁][𝐾]   ;   [𝐵] = [𝑁][𝑀]  (4.60) 

 

O sistema em espaço de estados, que é do formato: 

 

{𝑥̇} =  [𝐴]{𝑥} + [𝐵] {𝑢}    (4.61) 

Fica portando: 

[𝑱]−𝟏[𝑱]{𝒙̇} =  [𝑱]−𝟏[𝑲]{𝒙} + [𝑱]−𝟏[𝑴] {𝒖}    (4.62) 

 



 

𝑦 = [1 0 0 0 0 0]

[
 
 
 
 
 
𝑞1
𝑞2
𝑞3
𝑞4
𝑞5
𝑞6]
 
 
 
 
 

+ [0 0 0 0 0 0]𝑢  (4.63) 

 

4.3.2. Simulação do sistema completo sem controle 

4.3.2.1. Sistema sem atenuação 

O sistema foi simulado para o caso sem atenuação, ou seja, as constantes: 

dissipação do cabo (B1) e o atrito viscoso (B2) foram consideradas nulas para que o 

comportamento do sistema pudesse ser estudado. Abaixo seguem os resultados obtidos 

para as variáveis de estado, dada uma excitação do tipo impulso: 

 

Figura 21 – Posição e velocidade do carro, para modelo completo  sem atenuação 

 

Figura 22 – Posição e velocidade angulares, para modelo completo sem atenuação 



 

 

Figura 23 – Distensão do cabo de aço para modelo completo sem atenuação  

Fica evidente a boa representação do sistema, que se comportou como era 

esperado, com a carga oscilando de forma senoidal após ser perturbada. 

4.3.2.2. Sistema com atenuação 

O mesmo sistema foi testado, porém com as variáveis B1 e B2 diferentes de 

zero. Neste caso, para uma excitação do tipo impulso, o resultado fica: 

 

Figura 24 – Posição e velocidade do carro, para modelo  completo com atenuação 



 

 

Figura 25 – Posição e velocidade angulares, para modelo completo com atenuação 

 

Figura 26 –Distensão do cabo de aço para modelo completo com atenuação 

Neste caso a inserção da atenuação faz com que a carga inicie um movimento 

de oscilação ao ser perturbada, mas tem sua energia dissipada com o decorrer do 

tempo, o que vai reduzindo a amplitude de oscilação até que ela fique praticamente 

nula. Com isso verifica-se que o sistema tem o comportamento esperado e portanto 

está validado. 

4.4. Modelo matemático simplificado sem controle 

4.4.1. Dedução do modelo simplificado 

Partindo da Lagrangeana do sistema, agora considerando o cabo inextensível e 

portanto com todas as derivadas de l em relação ao tempo serão nulas. 



 

𝐿 =  
𝑀∙𝑥2̇

2
+

𝑀𝑐

2
 [𝑥2̇ + 𝑙2̇ + 𝑙2𝜃2̇ − 2𝑙𝜃̇𝑥̇ cos 𝜃 −  2𝑥̇𝑙𝑠̇𝑒𝑛𝜃] − 𝑀𝑐𝑔 ∙ 𝑙 ∙ 𝑐𝑜𝑠𝜃 − 

𝑘(𝑙−𝑙0)
2

2
  

(4.64) 

Anulando as derivadas (e como l = lo): 

𝐿 =  
𝑀∙𝑥2̇

2
+
𝑀𝑐

2
 [𝑥2̇ ++𝑙2𝜃2̇ − 2𝑙𝜃̇𝑥̇ cos 𝜃] − 𝑀𝑐𝑔 ∙ 𝑙 ∙ 𝑐𝑜𝑠𝜃 (4.65) 

4.4.1.1. Variável x 

(
𝜕𝐿

𝜕𝑥̇
) =  (𝑀 +𝑀𝑐) 𝑥̇       (4.66) 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑥̇
) =   (𝑀 +𝑀𝑐) 𝑥̈ +  𝑀𝑐(−𝑙𝜃̈ 𝑐𝑜𝑠𝜃 + 𝑙 𝜃̇

2 𝑠𝑒𝑛𝜃 )  (4.67) 

 

𝜕𝐿

𝜕𝑥
=  0        (4.68) 

 

𝜕𝑅

𝜕𝑥̇
= 0        (4.69) 

 

𝑄𝑥 = 𝐹𝑡        (4.70) 

Que resulta na equação diferencial: 

(𝑀 +𝑀𝑐) 𝑥̈ +  𝑀𝑐(−𝑙𝜃̈ 𝑐𝑜𝑠𝜃 + 𝑙 𝜃̇
2 𝑠𝑒𝑛𝜃 ) =  𝐹𝑡    (4.71) 

 

Linearizando os termos em 𝜃, considerando pequenos deslocamentos 

angulares, tem-se que: 

𝑐𝑜𝑠𝜃 ≈ 1     ;     𝑠𝑒𝑛𝜃 ≈ 𝜃     ;      𝜃̇2 ≈ 0 

Resulta: 

(𝑴 +𝑴𝒄) 𝒙̈ −  𝑴𝒄𝒍𝜽̈  = 𝑭𝒕  (4.72) 

 

Que é a primeira equação diferencial do sistema. 

4.4.1.2. Variável θ 

(
𝜕𝐿

𝜕𝜃̇
) =  𝑀𝑐(𝑙

2𝜃̇ −  𝑙𝑥̇ 𝑐𝑜𝑠𝜃)     (4.73) 



 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝜃̇
) =   𝑀𝑐(𝑙

2𝜃̈ −  𝑙𝑥̈ 𝑐𝑜𝑠𝜃 + 𝑙𝑥̇𝜃̇ 𝑠𝑒𝑛𝜃)  (4.74) 

 

𝜕𝐿

𝜕𝜃
= 𝑀𝑐(𝑙𝑥̇𝜃̇ 𝑠𝑒𝑛𝜃 𝑔𝑙 𝑠𝑒𝑛𝜃)     (4.75) 

 

𝜕𝑅

𝜕𝜃̇
= 𝐵2𝜃̇        (4.76) 

 

𝑄𝜃 = 0       (4.77) 

Que resulta na equação diferencial: 

𝑀𝑐(𝑙
2𝜃̈ −  𝑙𝑥̈ 𝑐𝑜𝑠𝜃 −  𝑔𝑙 𝑠𝑒𝑛𝜃) + 𝐵2𝜃̇ =  0    (4.78) 

 

Linearizando os termos em 𝜃, considerando pequenos deslocamentos 

angulares, tem-se que: 

𝑐𝑜𝑠𝜃 ≈ 1     ;     𝑠𝑒𝑛𝜃 ≈ 𝜃 

Resulta: 

𝑴𝒄(𝒍
𝟐𝜽̈ −  𝒍𝒙̈  −  𝒈𝒍𝜽) + 𝑩𝟐𝜽̇ =  𝟎   (4.79) 

Que é a segunda equação diferencial do sistema. 

4.4.2. O modelo simplificado em espaço de estados 

O problema já em espaço de estados: 

𝑥 = 𝑞1  ;    𝑥̇ = 𝑞2   ;     𝜃 = 𝑞3   ;     𝜃̇ = 𝑞4   (4.80) 

[

1 0 0 0
0 (M +𝑀𝐶)/𝑀𝐶 0 −𝑙0
0 0 1 0

0 −𝑙0 0 𝑙0
2

] [

𝑞1̇
𝑞2̇
𝑞3̇
𝑞4̇

] =  

[
 
 
 
 
0 1 0 0
0 0 0 0
0 0 0 1

0 0 −(g ∙ 𝑙0) − (
𝐵2

𝑀𝐶
)]
 
 
 
 

∙ [

𝑞1
𝑞2
𝑞3
𝑞4

] + [

0
𝐹𝑇/𝑀𝐶

0
0

] 𝑢 (4.81) 

 

Neste sistema as variáveis não estão desacopladas, para fazer isto sejam: 

 



 

J = [

1 0 0 0
0 (M +𝑀𝐶)/𝑀𝐶 0 −𝑙0
0 0 1 0
0 −𝑙0 0 𝑙0

2

]  (4.82) 

 

K =

[
 
 
 
 
0 1 0 0
0 0 0 0
0 0 0 1

0 0 −(g ∙ 𝑙0) − (
𝐵2

𝑀𝐶
)]
 
 
 
 

  (4.83) 

 

M = [

0
𝐹𝑇/𝑀𝐶

0
0

]  (4.84) 

 

Fazemos então: 

[𝑁] = [𝐽]−1  (4.85) 

 

Então: 

[𝐴] =  [𝑁][𝐾]   ;   [𝐵] = [𝑁][𝑀]  (4.86) 

 

O sistema em espaço de estados, que é do formato: 

 

{𝑥̇} =  [𝐴]{𝑥} + [𝐵] {𝑢}    (4.87) 

Fica portando: 

[𝑱]−𝟏[𝑱]{𝒙̇} =  [𝑱]−𝟏[𝑲]{𝒙} + [𝑱]−𝟏[𝑴] {𝒖}    (4.88) 

 

𝑦 = [1 0 0 0] [

𝑞1
𝑞2
𝑞3
𝑞4

] + [0 0 0 0]𝑢  (4.89) 

 

4.4.3. Simulação do sistema simplificado sem controle 

O sistema simplificado também foi testado com as variáveis B1 e B2 diferentes 

de zero. Neste caso, para uma excitação do tipo impulso, o resultado fica: 



 

 

Figura 27 – Posição e velocidade do carro, para modelo simplificado com atenuação 

 

Figura 28 – Posição e velocidade angulares, para modelo  simplificado com atenuação 

Os resultados são muito similares aos obtidos no caso do modelo completo, 

comparativos e explicação serão mostrados em tópicos posteriores. 

4.5. Comparativo entre modelos 

Primeiramente para entender as diferenças entre os modelos, serão observados 

seus sistemas de equações. Sendo que para o modelo completo, o modelo matemático 

é: 

{
 
 

 
 

(𝑴+𝑴𝒄)𝒙̈ − 𝑴𝒄 ∙ 𝒍𝒆𝒒 ∙ 𝜹𝜽̈ = 𝑭𝑻

𝑴𝒄(𝒍𝒆𝒒
𝟐 ∙ 𝜹𝜽̈ + 𝒙̈ ∙ 𝒍𝒆𝒒 +𝒈 ∙ 𝒍𝒆𝒒 ∙ 𝜹𝜽) + 𝑩𝟐 𝜹𝜽̇ = 𝟎

𝑴𝒄(𝜹𝒍̈ + 𝒈) + 𝒌(𝒍𝒆𝒒 +  𝜹𝒍 − 𝒍𝟎) + 𝑩𝟏𝜹𝒍̇ = 𝟎

  (4.90) 

E para o modelo simplificado: 



 

{

(𝑴+𝑴𝒄)𝒙̈ − 𝑴𝒄 ∙ 𝒍𝟎 ∙ 𝜽̈ = 𝑭𝑻

𝑴𝒄(𝒍𝟎
𝟐 ∙ 𝜽̈ + 𝒙̈ ∙ 𝒍𝟎 + 𝒈 ∙ 𝒍𝟎 ∙ 𝜽) + 𝑩𝟐 𝜽̇ = 𝟎

  (4.91) 

Nota-se portanto, que as duas primeiras equações de ambos são iguais, sendo 

o único ponto em que se diferem o comprimento l considerado. No caso do modelo 

completo, é utilizado o comprimento considerando-se a deformação inicial, enquanto, 

no modelo simplificado, é usado apenas o comprimento inicial. 

O ponto mais importante de diferenciação entre os modelos é a terceira equação 

do modelo completo, que rege o movimento (deformação) ao longo do cabo de aço. 

Observando essa equação percebe-se que ela é independente das outras, pois só possui 

constantes e termos em l. Ou seja, após as simplificações impostas ao modelo não-

linear, a relação entre l e as outras variáveis foi perdida. 

Abaixo estão os vetores da diferença entre estados para os dois modelos: 

 

Figura 29 – Diferenças entre os modelos – Posição e velocidade do carro 

 

Figura 30 – Diferenças entre os modelos – Posição e velocidade angulares 



 

São pequenas diferenças nos vetores relacionados à posição do carro. No caso 

da posição angular, há uma pequena diferença de período de oscilação. 

  



 

5. CONTROLE 

5.1. Definição do problema de programação linear 

5.1.1. Determinação da função objetivo 

O critério para a otimização do sistema será a movimentação feita entre dois 

pontos, de forma que seja feito o menor esforço de controle e no menor tempo possível. 

Como foi explicado na introdução teórica, dado o sistema colocado em espaço de 

estados, as condições iniciais e finais, as equações são rearranjadas na forma; ver Eq. 

5.3: 

𝐺𝑈 = 𝑥(𝑛) −  𝐹𝑥(0)  (5.1) 

Com as definições: 

𝐹 =  𝐴𝑛  (5.2) 

𝐺 = [𝐴(𝑛−1)𝐵  𝐴(𝑛−2)𝐵  𝐴(𝑛−3)𝐵 ⋯ 𝐴1𝐵  𝐴0𝐵]   (5.3) 

𝑈 =  

[
 
 
 
 
𝑢(0)
𝑢(1)
⋮

𝑢(𝑛−2)
𝑢(𝑛−1)]

 
 
 
 

   (5.4) 

Dessa forma, os estados inicial e final estão previamente definidos, de modo 

que a variável livre do sistema é a lei de controle, ou seja, as entradas de controle u(1), 

u(2), ..., u(t). Com isso fica claro que não é possível inserir as variáveis de estado na 

função objetivo, sendo que se houver limites esses devem ser verificados ao fim do 

processo. Para a determinação do tempo mínimo, o processo é externo à PL e iterativo: 

partindo-se de um intervalo T = 15ms e adicionando um intervalo incremental, até que 

todas as condições impostas sejam atendidas. Entendidos todos esses pontos, pode-se 

definir a função objetivo da PL: 

min(𝐽) =  |𝑢(1)| + |𝑢(2)| + ⋯+ |𝑢(𝑁 − 1)| + |𝑢(𝑁)|   (5.5) 

Como visto anteriormente, problema do módulo na função objetivo pode ser 

resolvida com a inserção de N variáveis fictícias e a introdução de 2N desigualdades 

ao problema, ficando: 



 

min(𝐽) =  𝑢(1 + 𝑁) + 𝑢(2 + 𝑁) +⋯+ 𝑢(2𝑁 − 1) + 𝑢(2𝑁)  (5.6) 

Sujeito a: 

𝑢(1) ≤ 𝑢(1 + 𝑁)   ;   −𝑢(1) ≤ 𝑢(1 + 𝑁) 

𝑢(2) ≤ 𝑢(2 + 𝑁)   ;   −𝑢(2) ≤ 𝑢(2 + 𝑁) 

     ⋮    (5.7) 

𝑢(𝑁 − 1) ≤ 𝑢(2𝑁 − 1)   ;   −𝑢(𝑁 − 1) ≤ 𝑢(2𝑁 − 1) 

𝑢(𝑁) ≤ 𝑢(2𝑁)   ;   −𝑢(𝑁) ≤ 𝑢(2𝑁)  

5.1.2. Determinação das restrições 

Como restrições, além das introduzidas pelo artifício da função objetivo e das 

restrições do sistema, representadas pela equação 𝐺𝑈 = 𝑥(𝑛) −  𝐹𝑥(0), serão 

introduzidas restrições físicas ao sistema como em [5]: 

Velocidade máxima do carro = 2m/s. ∴  𝑣𝑚𝑎𝑥 ≤ 2𝑚/𝑠  (5.8) 

Aceleração máxima do carro = 1m/s². ∴  𝑎𝑚𝑎𝑥 ≤ 1 𝑚/𝑠² (5.9) 

5.1.3. Condições iniciais e finais 

O sistema deve partir do repouso e a posição inicial será tomada como 

referência. Na posição final a velocidade de oscilação da carga deve ser nula, assim 

como esta deve estar na posição vertical. O carro deverá estar em repouso na posição 

final. Assim, os vetores para as condições inicial e final são: 

𝑥0 = [0 0 0 0 0 0]
𝑡  (5.10) 

𝑥𝑓 = [ 𝑃 0 0 0 0 0]𝑡  (5.11) 

A posição final testada será P = 2,2m. 

5.1.4. Descrição completa no formato de PL 

5.1.4.1. Modelo completo no formato de PL 

A descrição completa no formato de PL: 

min(𝐽) =  𝑢(1 + 𝑁) + 𝑢(2 + 𝑁) +⋯+ 𝑢(2𝑁 − 1) + 𝑢(2𝑁)  (5.12) 



 

Sujeito a: 

𝐺𝑈 = 𝑥(𝑛) −  𝐹𝑥(0)  (5.13) 

𝑢(1) ≤ 𝑢(1 + 𝑁) ≤ 1 ∗
𝑀𝑐

𝐹𝑡
   ;   −𝑢(1) ≤ 𝑢(1 + 𝑁) ≤ 1 ∗

𝑀𝑐

𝐹𝑡
 

𝑢(2) ≤ 𝑢(2 + 𝑁) ≤ 1 ∗
𝑀𝑐

𝐹𝑡
  ;   −𝑢(2) ≤ 𝑢(2 + 𝑁) ≤ 1 ∗

𝑀𝑐

𝐹𝑡
 

⋮    (5.14) 

𝑢(𝑁 − 1) ≤ 𝑢(2𝑁 − 1) ≤ 1 ∗
𝑀𝑐

𝐹𝑡
   ;   −𝑢(𝑁 − 1) ≤ 𝑢(2𝑁 − 1) ≤ 1 ∗

𝑀𝑐

𝐹𝑡
 

𝑢(𝑁) ≤ 𝑢(2𝑁) ≤ 1 ∗
𝑀𝑐

𝐹𝑡
   ;   −𝑢(𝑁) ≤ 𝑢(2𝑁) ≤ 1 ∗

𝑀𝑐

𝐹𝑡
 

𝑥0 = [0 0 0 0 0 0]
𝑡   (5.15) 

𝑥𝑓 = [ 2.2 0 0 0 0 0]𝑡  (5.16) 

5.1.4.2. Modelo simplificado no formato de PL 

O modelo simplificado no formato de PL é exatamente igual ao do modelo 

completo, sendo que os vetores de estado iniciais e finais são de dimensão 4x1 e as 

matrizes A e B do sistema são as matrizes para o sistema simplificado. 

5.2. Simulação do problema com controle 

Para a determinação do tempo mínimo, será usado um intervalo de tempo 

discreto 𝑇 = 15𝑚𝑠. Inicialmente N=1 e a possibilidade de solução será verificada. Em 

caso negativo será inserido um novo instante de tempo e o sistema testado novamente 

e assim sucessivamente até que o sistema seja solúvel. 

5.2.1. Resolução da PL para o modelo completo 

A otimização do modelo completo com a programação linear mostrou-se 

insolúvel. Investigando a causa, foi encontrada uma justificativa: na definição da PL o 

estado final é pré-determinado, porém como a equação que define a dinâmica da 

deformação do cabo de aço é independente de x, e como não há entrada de controle 

em l, não é possível controlar a deformação ao longo do histórico de controle. 



 

Desta forma, torna-se impossível resolver o problema de controle ótimo para o 

modelo completo usando programação linear. A solução será encontrada para o 

modelo simplificado e o histórico de controle definido será aplicado no modelo 

completo. Como será visto, o resultado não será satisfatório e outra abordagem será 

adotada. 

5.2.2. Resolução da PL para o modelo simplificado 

Para o modelo simplificado, o número mínimo de intervalos necessários para 

garantir a convergência da solução de PL é de N = 213, que resulta num tempo total 

de movimentação de 3,2 segundos. Os resultados para a história de controle e para os 

estados são mostrados a seguir: 

 

Figura 31 – Controle, Posição do carro e posição angular – Modelo simplificado 

A simulação foi estendida até 300 instantes de tempo, com entradas de controle 

nulas para instantes a partir do 214 para que fosse possível observar o comportamento 

da carga ao final do movimento. 



 

 

Figura 32 – Variáveis de estado – Modelo simplificado 

5.2.2.1. Aplicação da história de controle para o modelo completo 

Aplicando a história de controle obtida para o modelo simplificado agora no 

modelo completo, foram obtidos os resultados a seguir: 

 

Figura 33 – Posição do carro e posição angular – Modelo completo 

 

Figura 34 – Posição e velocidade do carro, para modelo completo com controle 



 

 

Figura 35 – Posição e velocidade angulares, para modelo completo com controle 

A conclusão a que se chega é que o modelo simplificado pode não trazer bons 

resultados para o posicionamento da carga no caso de o cabo ter alguma deformação 

(neste caso o cabo em equilíbrio tem uma distensão de 8% em relação ao comprimento 

original). Isto ocorre pois ao alterar o comprimento do cabo muda-se o período de 

oscilação da carga. 

A seguir está demonstrada uma tentativa de controle do modelo completo, 

porém sem considerar a equação que relaciona a dinâmica ao longo do comprimento 

do cabo (que é independente), ou seja, serão utilizadas apenas duas das equações de 

movimento, que relacionam a posição do carro e ângulo com o comprimento de 

equilíbrio do cabo (lembrando que o problema usando as três equações é insolúvel). 

 

Figura 36 – Controle, posição do carro e posição angular – Modelo completo 



 

 

Figura 37 – Variáveis de estado para modelo completo 

Neste caso N = 213 e o tempo total de movimentação foi de T = 3,2 segundos. 

Após este período a carga se estabiliza na posição final e permanece sem oscilação 

angular como é desejado. 

5.2.2.2. Aplicação da história de controle para o modelo completo – 

Pequena deformação 

Para verificar o impacto da deformação do cabo, o histórico de controle do 

modelo simples será aplicado ao modelo completo, porém neste caso a constante de 

elasticidade do cabo será aumentada de forma a reduzir a extensão do cabo a 2% do 

original. Os resultados são mostrados a seguir. 

Nota-se que a estabilidade ao fim do percurso ainda não foi garantida, porém é 

evidente a melhora na oscilação da carga com o fim da entrada de controle. De 

qualquer forma, com a deformação do cabo de aço, o controle usando um modelo 

matemático que não considera este aspecto do modelo físico não garantirá o melhor 

resultado. 

 



 

 

Figura 38 – Controle, posição do carro e posição angular – Modelo completo 

 

Figura 39 – Variáveis de estado para modelo completo  

 

 

  



 

6. RESULTADOS 

6.1. Modelos matemáticos obtidos 

Partindo da dedução geral do modelo físico foram deduzidos sistemas de 

equações matemáticas que representassem tal modelo. Sem aplicar nenhuma 

simplificação foi deduzido o modelo não-linear. A partir dele foram inseridas hipóteses 

simplificadoras para a obtenção dos outros modelos. 

6.1.1. Modelo não-linear 

O modelo matemático inicialmente obtido, que é não linear, é: 

{
 
 

 
 
(𝑴+𝑴𝒄) 𝒙̈ + 𝑴𝒄(−𝒍𝜽̈ 𝒄𝒐𝒔𝜽 + 𝒍 𝜽̇

𝟐 𝒔𝒆𝒏𝜽 − 𝒍̈ 𝒔𝒆𝒏𝜽 − 𝒍̇𝜽̇ 𝒄𝒐𝒔𝜽 ) =  𝑭𝒕 

𝑴𝒄(𝒍̈ − 𝒙̈ 𝒔𝒆𝒏𝜽 −   𝒍𝜽
𝟐̇  +  𝒈 𝒄𝒐𝒔𝜽) + 𝒌(𝒍 − 𝒍𝟎) + 𝑩𝟏𝒍̇ =  𝟎

𝑴𝒄(𝟐𝒍𝒍̇𝜽̇ + 𝒍
𝟐𝜽̈ −  𝒍𝒙̈ 𝒄𝒐𝒔𝜽 −  𝒈𝒍 𝒔𝒆𝒏𝜽) + 𝑩𝟐𝜽̇ =  𝟎

 (6.1) 

 

6.1.2. Modelo linear completo 

Aplicando simplificações para pequenos ângulos, desprezando termos 

quadráticos e usando a metodologia de pequenos distúrbios para as variáveis nas quais 

isso faz sentido, o modelo linear obtido é: 

{
 
 

 
 

(𝑴+𝑴𝒄)𝒙̈ − 𝑴𝒄 ∙ 𝒍𝒆𝒒 ∙ 𝜹𝜽̈ = 𝑭𝑻

𝑴𝒄(𝒍𝒆𝒒
𝟐 ∙ 𝜹𝜽̈ + 𝒙̈ ∙ 𝒍𝒆𝒒 +𝒈 ∙ 𝒍𝒆𝒒 ∙ 𝜹𝜽) + 𝑩𝟐 𝜹𝜽̇ = 𝟎

𝑴𝒄(𝜹𝒍̈ + 𝒈) + 𝒌(𝒍𝒆𝒒 +  𝜹𝒍 − 𝒍𝟎) + 𝑩𝟏𝜹𝒍̇ = 𝟎

  (6.2) 

 

6.1.3. Modelo linear simplificado 

Para o mesmo modelo não-linear, aplicando simplificações para pequenos 

ângulos, desprezando termos quadráticos e considerando as derivadas em relação à 

variável l nulas (cabo inextensível), o modelo resultante fica: 



 

{

(𝑴+𝑴𝒄)𝒙̈ − 𝑴𝒄 ∙ 𝒍𝟎 ∙ 𝜽̈ = 𝑭𝑻

𝑴𝒄(𝒍𝟎
𝟐 ∙ 𝜽̈ + 𝒙̈ ∙ 𝒍𝟎 + 𝒈 ∙ 𝒍𝟎 ∙ 𝜽) + 𝑩𝟐 𝜽̇ = 𝟎

  (6.3) 

6.2. História de controle obtida 

Para a movimentação com as condições definidas no problema e usando o 

modelo matemático simplificado a história de controle obtida foi: 

 

Figura 40 – História de controle para modelo simplificado 

No caso do modelo matemático completo a história de controle obtida foi 

levemente diferente: 

 

Figura 41 – História de controle para modelo completo  

6.3. História de controle aplicada aos modelos matemáticos 

6.3.1. Modelo linear completo 

6.3.1.1. História de controle para o modelo simplificado 

História de controle, obtida na resolução da PL do modelo simplificado, 

aplicada ao modelo completo. 



 

 

 

Figura 42 –Variáveis de estado do modelo completo – Controle para modelo simplificado  

6.3.1.2.  História de controle para o modelo completo 

História de controle, obtida na resolução da PL do modelo completo, aplicada 

ao modelo completo. 

 

Figura 43 –Variáveis de estado do modelo completo – Controle para modelo completo 

6.3.2. Modelo linear simplificado 



 

História de controle, obtida na resolução da PL do modelo simplificado, 

aplicada ao modelo simplificado. 

 

Figura 44 –Variáveis de estado do modelo simplificado – Controle para modelo 

simplificado 

  



 

7. CONCLUSÕES 

Após todas as dificuldades enfrentadas ao longo da elaboração do estudo e da 

análise de todos os resultados, algumas conclusões podem ser feitas: 

 O modelo é não-linear: ficou claro que a tentativa de linearização do 

modelo faz com que as variáveis fiquem desacopladas, o que não é 

verdadeiro para o modelo físico. As simplificações fizeram com que a 

equação que exibe a dinâmica de distensão do cabo de aço se tornasse 

independente das demais e portanto a interferência que isso possa ter 

no movimento angular da carga não foi capturado. 

 Ao linearizar o modelo são necessárias apenas duas equações: como 

mencionado anteriormente, a terceira equação de movimento nada diz 

a respeito da posição do carro e da posição angular da carga, deste 

modo, se o estudo for a respeito da oscilação angular e do 

posicionamento, somente duas equações são relevantes. 

 Os modelos matemáticos do sistema simplificado e completo são 

semelhantes: ao eliminar a terceira equação os dois sistemas ficam 

muito similares, a única diferença entre eles é o comprimento do cabo 

utilizado. 

 Contemplar ou não a distensão do cabo faz diferença: os testes de 

controle mostram que existem diferenças nos resultados ao se utilizar o 

comprimento original ou o comprimento de equilíbrio do cabo 

suportando a carga. 

 A deformação é o que interessa: conforme se reduz a deformação 

percentual do comprimento de equilíbrio em relação ao comprimento 

original, mais próximos ficam os modelos, o que é esperado.  

 O modelo simplificado foi testado por [5] num modelo físico e obteve 

resultados excelentes. Porém o protótipo utilizava uma pequena barra 

de aço como cabo, além de uma carga de massa extremamente pequena, 

portanto as hipóteses adotadas por ele são muito aderentes ao protótipo 

físico. 



 

 Dado que não há custo adicional em relação ao controlador, é 

interessante sempre utilizar o modelo matemático considerando-se o 

comprimento do cabo já deformado, de forma a garantir uma 

movimentação mais estável e um resultado mais próximo do real. 

  



 

8. SUGESTÕES DE CONTINUIDADE 

A seguir são listadas algumas sugestões de continuidade para o estudo: 

 Testar os resultados deste trabalho em um modelo físico ou protótipo 

para confirmar a veracidade. 

 Fazer uma simulação das histórias de controle no modelo não-linear 

para entender qual a dinâmica que ele adotaria. Adicionalmente pode 

ser interessante resolver o problema de controle ótimo com técnicas de 

controle não-linear. 

 Estender o estudo para guindastes, de forma a contemplar a elasticidade 

da viga, que se curva conforma a carga se movimenta para a ponta da 

lança. O modelo físico e o respectivo modelo matemático são 

mostrados abaixo (cabo inextensível). 

 

Figura 45 – Modelo de viga de guindaste com elast icidade 

 

{
 
 

 
 (𝑴+𝑴𝒄) 𝒙̈ − 𝑴𝒄𝒍𝜽̈ −  

(𝑴+𝑴𝒄)
𝟐 𝐠𝟐𝒙𝟐

𝟐𝑬𝑰 
= 𝟎

(𝑴+𝑴𝒄) 𝜹̈ −  𝑴𝒄𝒍 ∙ 𝜽̈ ∙ 𝜽 + (𝑴+𝑴𝒄)𝒈 = 𝟎

𝒍𝜽̈ − 𝒙̈ − 𝜹̈𝜽 = 𝟎

  (7.1) 
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10. APÊNDICE A – PROGRAMAS 

// ------------------------- Rubens Meneghini Terra ----------------------------// 
//                                                                                                          // 
// Projeto de Conclusao de curso                    // 
// Simulação Linear das equações de movimento          // 
// SISTEMA SIMPLIFICADO SEM ATUACAO E CONTROLE         // 
// ENTRADA IMPULSO                      // 
// --------------------------------------------------------------------------------------- // 

 

//LIMPA 

clear 

//--------------  CONSTANTES DE PROJETO  --------------- 

g=9.8; 

pi=3.1415; 

 

M= 150; 

Mc= 1000; 

 

k = 1e5; 

 

B1 = 300; 

B2 = 100; 

 

li = 0.7; 

leq = li + Mc*g/k; 

 

Ft = 100; 

 

// ------- CONSTANTES PARA ESPAÇO DE ESTADOS ---------- 

c1 = (M+Mc)/Mc; 

c2 = -li; 

c3 = -li; 

c4 = li*li; 

c5 = -g*li; 

c6 = -B2/Mc; 

c7 = Ft/Mc; 

// --------- MATRIZES PARA O SISTEMA LINEAR ----------- 



 

J= [1 0 0 0; 

    0 c1 0 c2; 

    0 0 1 0; 

    0 c3 0 c4]; 

 

K = [0 1 0 0; 

     0 0 0 0; 

     0 0 0 1; 

     0 0 c5 c6]; 

 

L = [0;c7;0;0]; 

 

M = inv(J); 

 

A = M*K; 

 

B=M*L; 

 

C=[1 0 0 0]; 

 

D=0; 

 

// ------------- DEFINICAO DO SISTEMA --------------- 

funcCrane=syslin('c',A,B,C,D);  

 

x0=0; 

t=0:0.01:10; 

 

// Simulando o sistema usando o comando csim 

[x]=csim('impuls',t,funcCrane); 

xset('window',1) 

xset('thickness',3) 

xset('font size',3) 

plot(t,x,2); 



 

xtitle("Resposta a impulso - Deslocamento","Tempo (t) [s]","Deslocamento (x) [m]"); 

 

// -------------- VELOCIDADE -------------------- 

C=[0 1 0 0]; 

 

//Definição do sistema 

funcCrane=syslin('c',A,B,C,D);  

 

x0=0; 

t=0:0.01:10; 

 

// Simulando o sistema usando o comando csim 

[x]=csim('impuls',t,funcCrane); 

xset('window',2) 

xset('thickness',3) 

xset('font size',3) 

plot(t,x,1); 

xtitle("Resposta a impulso - Velocidade","Tempo (t) [s]","Velocidade (x´) [m/s]"); 

 

// -------------- ANGULO ---------------------- 

C=[0 0 1 0]; 

 

//Definição do sistema 

funcCrane=syslin('c',A,B,C,D);  

 

x0=0; 

t=0:0.01:10; 

 

// Simulando o sistema usando o comando csim 

[x]=csim('impuls',t,funcCrane); 

xset('window',3) 

xset('thickness',3) 

xset('font size',3) 

plot(t,x,1); 



 

xtitle("Resposta a impulso - Posição Angular","Tempo (t) [s]","Posição Angular (theta) 

[rad]"); 

 

// ------------------ VELOCIDADE ANGULAR -----------------------  

C=[0 0 0 1]; 

 

//Definição do sistema 

funcCrane=syslin('c',A,B,C,D);  

 

x0=0; 

t=0:0.01:10; 

 

// Simulando o sistema usando o comando csim 

[x]=csim('impuls',t,funcCrane); 

xset('window',4) 

xset('thickness',3) 

xset('font size',3) 

plot(t,x,1); 

xtitle("Resposta a impulso - Velocidade Angular","Tempo (t) [s]","Velocidade Angular 

(theta´) [rad/s]"); 

  



 

// ------------------------- Rubens Meneghini Terra ----------------------------// 
//                                                                                                          // 
// Projeto de Conclusao de curso            // 
// Simulação Linear das equações de movimento          // 
// SISTEMA COMPLETO SEM ATUACAO E CONTROLE         // 
// ENTRADA IMPULSO             // 
// --------------------------------------------------------------------------------------/// 
 
//LIMPA 
clear 
 
//-----------------  CONSTANTES DE PROJETO  ---------------------- 
g=9.8; 
pi=3.1415; 
 
M= 150; 
Mc= 1000; 
 
k = 1e5; 
 
B1 = 300; 
B2 = 100; 
 
li = 0.7; 
leq = li + Mc*g/k; 
 
Ft = 100; 
 
// --------------- CONSTANTES PARA ESPAÇO DE ESTADOS -------------- 
c1 = (M+Mc)/Mc; 
c2 = -leq; 
c3 = -leq; 
c4 = leq*leq; 
c5 = -g*leq; 
c6 = -B2/Mc; 
c7 = Ft/Mc; 
c8 = 1; 
c9= -k/Mc; 
c10 = -B1/Mc; 
c11= -((k/Mc*(leq-li))+g); 
// ---------------- MATRIZES PARA O SISTEMA LINEAR -------------- 
J= [1 0 0 0 0 0; 
    0 c1 0 c2 0 0; 
    0 0 1 0 0 0; 
    0 c3 0 c4 0 0; 
    0 0 0 0 1 0; 
    0 0 0 0 0 c8]; 
 
K = [0 1 0 0 0 0; 
     0 0 0 0 0 0; 
     0 0 0 1 0 0; 
     0 0 c5 c6 0 0; 
     0 0 0 0 0 1; 
     0 0 0 0 c9 c10]; 
 
L = [0;c7;0;0;0;c11]; 
 
M = inv(J); 



 

 
A = M*K; 
 
B=M*L; 
 
C=[1 0 0 0 0 0]; 
 
D=0; 
 
// ---------- DEFINICAO DO SISTEMA --------------- 
funcCrane=syslin('c',A,B,C,D);  
 
x0=0; 
t=0:0.001:10; 
 
// Simulando o sistema usando o comando csim 
[x]=csim('impuls',t,funcCrane); 
xset('window',1) 
xset('thickness',3) 
xset('font size',3) 
plot(t,x,1); 
xtitle("Resposta a impulso - Deslocamento","Tempo (t) [s]","Deslocamento (x) [m]"); 
 
// -------------- VELOCIDADE ----------------- 
C=[0 1 0 0 0 0]; 
 
//Definição do sistema 
funcCrane=syslin('c',A,B,C,D);  
 
x0=0; 
t=0:0.001:10; 
 
// Simulando o sistema usando o comando csim 
[x]=csim('impuls',t,funcCrane); 
xset('window',2) 
xset('thickness',3) 
xset('font size',3) 
plot(t,x,1); 
xtitle("Resposta a impulso - Velocidade","Tempo (t) [s]","Velocidade (x´) [m/s]"); 
 
// ----------------- ANGULO ------------------ 
C=[0 0 1 0 0 0]; 
 
//Definição do sistema 
funcCrane=syslin('c',A,B,C,D);  
 
x0=0; 
t=0:0.01:10; 
 
// Simulando o sistema usando o comando csim 
[x]=csim('impuls',t,funcCrane); 
xset('window',3) 
xset('thickness',3) 
xset('font size',3) 
plot(t,x,1); 
xtitle("Resposta a impulso - Posição Angular","Tempo (t) [s]","Posição Angular (theta) [rad]"); 
 
// -------------------VELOCIDADE ANGULAR ------------------- 



 

C=[0 0 0 1 0 0]; 
 
//Definição do sistema 
funcCrane=syslin('c',A,B,C,D);  
 
x0=0; 
t=0:0.001:10; 
 
// Simulando o sistema usando o comando csim 
[x]=csim('impuls',t,funcCrane); 
xset('window',4) 
xset('thickness',3) 
xset('font size',3) 
plot(t,x,1); 
xtitle("Resposta a impulso - Velocidade Angular","Tempo (t) [s]","Velocidade Angular (theta´) 
[rad/s]"); 
 
// -------------- DISTENÇÃO DO CABO DE AÇO ----------------- 
C=[0 0 0 0 1 0]; 
 
//Definição do sistema 
funcCrane=syslin('c',A,B,C,D);  
 
x0=0; 
t=0:0.001:10; 
 
// Simulando o sistema usando o comando csim 
[x]=csim('impuls',t,funcCrane); 
xset('window',5) 
xset('thickness',3) 
xset('font size',3) 
plot(t,x,1); 
xtitle("Resposta a impulso - Distenção do cabo","Tempo (t) [s]","Distenção do cabo (l) [m]"); 

 

 

  



 

% -------------------------------------------------------% 
%-  Rubens Meneghini Terra                              -% 
%-                                                      -% 
%-  Projeto de Conclusao de curso                       -% 
%-  Simulação Linear das equações de movimento          -% 
%-  SISTEMA SIMPLES COM ATUACAO E COM CONTROLE          -% 
%-  CONTROLE OTIMO                                      -% 
% -------------------------------------------------------% 

  
%LIMPA 
clear, clc, clf, format short e  

  
%-------- CONSTANTES DE PROJETO -------- 
pi=3.1415; 
g=9.8 

  
M= 150; 
Mc= 1000; 

  
k = 1e5; 

  
B1 = 300; 
B2 = 100; 

  
li = 1.2; 
leq = li + Mc*g/k; 

  
Ft = 100; 
%-------- RESTRICOES FISICAS DO MODELO -------- 
xi = [0 0 0 0]';                   %estado inicial 
xf = [2.2 0 0 0]';                 %estado final 
xM = [2.6 2 10*pi/180 10]';      %max valores do estado em modulo 
uM = [10];                         %max valor do controle em modulo 
T = 1.5/100;                       %constante de tempo de amostragem 
%---------------------------------------------- 

  
% ------ CONSTANTES PARA ESPAÇO DE ESTADOS -------- 
c1 = (M+Mc)/Mc; 
c2 = -li; 
c3 = -li; 
c4 = li*li; 
c5 = -g*li; 
c6 = -B2/Mc; 
c7 = Ft/Mc; 
% ------ MATRIZES PARA O SISTEMA LINEAR --------- 
W= [1 0 0 0; 
    0 c1 0 c2; 
    0 0 1 0; 
    0 c3 0 c4]; 

  
K = [0 1 0 0; 
     0 0 0 0; 
     0 0 0 1; 
     0 0 c5 c6]; 

  
L = [0;c7;0;0]; 

  



 

M = inv(W); 

  
G = M*K; 
H=M*L; 
I=[1 0 0 0]; 
J=0; 

  
[A, B, C, D] = c2dm(G,H,I,J,T,'zoh'); %converte para o tempo 

discreto 
n = length(A); 

  
N = 1;     %define a quant. de intervalos (será iterado) 
flag = 0;  %indica que nao atingiu a condicao de tempo minimo 
while flag == 0 

  
    t_total = 300*T; 
    % Funcao Objetivo J 
    % Criando N variaveis ’u’ ficticias, mas do vetor ’u’ so usamos 

as N 
    % primeiras na simulacao e as N ultimas na minimizacao do 

controle 
    % Fazendo J = u(N+1) + u(N+2) +...+ u(2N) 
    f = [zeros(N,1);ones(N,1)];  %Define a funcao objetivo 
    % Incluindo as restricoes: 
    % u(1) <= u(N +1); ?u(1) <= u(N +1) 
    % u(2) <= u(N +2); ?u(2) <= u(N +2) 
    % : : : : 
    % u(N) <= u(N +N);?u(N) <= u(N +N) 

  
    for i = 1 : N 
        a1(i, i) = 1; 
        a1(i, i+N) = -1; 
        a2(i, i) = -1; 
        a2(i, i+N) = -1; 
    end 

  
    a = [a1 
         a2];  
    b = [zeros(N,1) 
         zeros(N,1)]; 

  
    % Condições de igualdade da PL (Funcoes G e F) 
    Aeq = []; 
    for i = (N-1) : -1 : 0 
        Aeq = [Aeq A^i*B]; 
    end 
    Aeq = [Aeq zeros(n,N)]; %Matriz do lado esquerdo da igualdade 
    beq = xf -(A^N) * xi;   %Vetor do lado direito da igualdade 

  
    % Restricoes de maximo no vetor de controle (incognitas) 
    % |u| <= uM 
    LB = -uM*ones(2*N,1); 
    UB = +uM*ones(2*N,1); 

  
    %—----- Resolucao do sistema linear 
    [u, fval,exitflag,output] = linprog(f,a,b,Aeq,beq,LB,UB); 
    %——————————————————- 



 

     
    if exitflag ==1 || N >= t_total/T 
        flag = 1; 
    else 
        N=N+1; 
    end 
end 

  
% ------ Simulacao do sistema resultante -------- 
t_RP = 0 : t_total/T; 
t_RP = t_RP'; 

  
% Do vetor de controle usamos apenas os N primeiros valores 
u_RP = [0]; 
for i=1 : +1 : N 
    u_RP = [u_RP u(i)]; 
end 
%Ate o fim do tempo total de simulacao, a entrada de controle é nula 
u_RP = [u_RP zeros(1 , t_total/T-N)]; 
u_RP = u_RP'; 

  
%Define o sistema em tempo discreto 
sys= ss(A, B, C, D,[]);  
%Simula o sistema linear 
[x,t,y]=lsim(sys,u_RP,t_RP,xi,'zoh'); 

  
%Plota o resultado da PL 
if exitflag > 0 
    texto = 'O.K.CONVERGIU!!!!';  
elseif exitflag == 0 
    texto = 'NAO CONVERGIU'; 
else 
    texto = ' <<< INSOLUVEL >>>'; 
end 
disp(texto) 
disp('|u1|+|u2|+:::+|uN| =') 
disp(norm(u(1 : N),1)) 
figure('Color',[1 1 1]); 

  
posicao= y(1:t_total/T+1,1); 
velocidade= y(1:t_total/T+1,2); 
theta= y(1:t_total/T+1,3); 
thetaponto= y(1:t_total/T+1,4); 
grafico = [posicao,theta]; 

  
subplot(2,1,2) 
    plot(t,grafico,'-','LineWidth',3), grid, hold on; 
    title('Posição do carro e posição angular da carga') 
    xlabel(texto) 
    legend('x', 'theta') 
    xlabel('Instantes de tempo'); 
    ylabel('Estados'); 
 subplot(2,1,1) 
     stairs(t, u_RP,'- m','LineWidth',2), grid, hold on; 
     title('U - controle') 
     xlabel(texto) 
     xlabel('Instantes de tempo'); 



 

     ylabel('Entradas de controle'); 

      
figure('Color',[1 1 1]); 
subplot(2,2,1) 
    plot(t,posicao,'-','LineWidth',3), grid, hold on; 
    title('Posição do carro X Tempo') 
    xlabel('Instantes de tempo'); 
    ylabel('Posição do carro [m]'); 
 subplot(2,2,2) 
     plot(t, velocidade,'-','LineWidth',3), grid, hold on; 
     title('Velocidade do carro X Tempo') 
     xlabel('Instantes de tempo'); 
     ylabel('Velocidade do carro [m/s]'); 
 subplot(2,2,3) 
     plot(t, theta,'-','LineWidth',3), grid, hold on; 
     title('Posição angular da carga X Tempo') 
     xlabel('Instantes de tempo'); 
     ylabel('Posição angular da carga [rad]'); 
  subplot(2,2,4) 
     plot(t, thetaponto,'-','LineWidth',3), grid, hold on; 
     title('Velocidade angular da carga X Tempo') 
     xlabel('Instantes de tempo'); 
     ylabel('Velocidade angular da carga [rad/s]'); 

 

 

 


